Technology of Metal Forming Processes
Technology of Metal Forming Processes

Surender Kumar
Professor and Head
Department of Production Engineering
Birla Institute of Technology
Ranchi

PHI Learning Private Limited
New Delhi-110001
2008
Contents

Preface ... xiii
Nomenclature ... xv

1. INTRODUCTION .. 1–19
 1.1 Conceptual Framework .. 1
 1.2 Cold, Hot and Warm Forming .. 2
 1.3 Metalworking and Types of Stresses ... 4
 1.4 Temperature in Metalworking .. 4
 1.5 Workability and Crack Formation .. 6
 1.6 Experiments in Metalworking ... 6
 1.7 Bulk Deformation Processes .. 8
 1.8 Sheet Metalworking Processes ... 16
 Exercises .. 19

2. STATE OF STRESS .. 20–36
 2.1 Introduction ... 20
 2.2 Components of Stresses ... 22
 2.3 Principal Stresses ... 23
 2.4 Stress Invariants ... 25
 2.5 Mean Stress and Stress Deviator ... 26
 2.6 Maximum and Octahedral Shear Stresses ... 28
 2.7 Mohr’s Representation of the State of Stress ... 30
 2.8 Differential Equations of Equilibrium ... 32
 Exercises .. 34

3. STRAIN AND STRAIN RATES ... 37–43
 3.1 Introduction ... 37
 3.2 Strain Rates and Velocities .. 37
3.3 Principal Strain Rates and Their Axes 40
3.4 Incompressibility 41
3.5 Infinitesimal Strains and Displacements 42

Exercises 42

4. STRESS–STRAIN AND STRESS–STRAIN RATE LAWS 44–55
4.1 Introduction 44
4.2 The Load–Extension Diagram in Simple Tension 44
4.3 True Stress–Strain Diagram 45
4.4 Some Important Deviations 47
4.5 Idealization of Stress–Strain Diagrams 48
4.6 Empirical Equation for Stress–Strain Curve 49
4.7 Elastic Stress–Strain Laws 49
4.8 The Prandtl–Reuss Equation 50
4.9 The Levy–Mises Equations 51
4.10 The Levy–Lode Variables 51
4.11 Vo–Mises Stress–Strain Rate Law 53
Exercises 54

5. YIELD CRITERIA AND FLOW RULES ... 56–64
5.1 Introduction 56
5.2 Tresca Yield Criterion 56
5.3 Von Mises Yield Criterion 57
5.4 Geometrical Representation of the Yield Criteria 58
5.5 Yield Criteria for Plane Stress 60
5.6 Experimental Evidence for the Yield Criteria 61
Exercises 63

6. FRICTION IN METALWORKING ... 65–72
6.1 Introduction 65
6.2 Mechanics of Friction 66
6.3 Discussion 70
Exercises 72

7. LUBRICATION MECHANISM AND METALWORKING
LUBRICANTS.. 73–93
7.1 Introduction 73
7.2 Principle of Lubrication 73
7.3 Lubrication Mechanism 75
7.4 Lubricant Needs of the Industry 76
7.5 Components of Lubricants 76
7.6 Cost and Final Selection 77
7.7 Classification of Lubricants 78
7.8 Lubricants Used in Forming Processes 79
 7.8.1 Extrusion Lubricants 79
 7.8.2 Wire Drawing Lubricants 80
 7.8.3 Sheet Metal Lubricants 82
 7.8.4 Rolling Lubricants 84
 7.8.5 Forging Lubricants 85
7.9 General Properties of Lubricants 87
7.10 Chemical Characteristic Values 89
7.11 Solid Lubricants 90
 7.11.1 Categories of Solid Lubricants 91
 7.11.2 An Ideal Solid Lubricant 92

Exercises 92

8. DRAWING AND EXTRUSION OF CYLINDRICAL BODIES 94–110
 8.1 Introduction 94
 8.2 Free-body Equilibrium Approach 94
 8.3 Optimal Cone Angle and Dead Zone Formation 103
 8.4 Hydrodynamic Wire Drawing 105
 8.5 Hydrostatic Extrusion 106
 8.6 Defects and Irregularities 107

Exercises 107

9. DRAWING AND EXTRUSION IN PLANE STRAIN 111–119
 9.1 Introduction 111
 9.2 Drawing and Extrusion of a Strip 111
 9.3 Tube Drawing with a Mandrel 113
 9.4 Maximum Reduction 114
 9.5 Drawing without Friction 115
 9.6 The Constant B for Various Drawing Processes 117

Exercises 117

10. DEEP DRAWING ... 120–133
 10.1 Introduction 120
 10.2 General Considerations 121
 10.3 Approximate Analysis of Load 124
 10.4 Analysis of Strain 127
 10.5 Formability 130
 10.6 Defects and Irregularities 131

Exercises 133

11. STRIP ROLLING ... 134–148
 11.1 Introduction 134
 11.2 Pressure Distribution 134
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.3</td>
<td>Position of the Neutral Section</td>
<td>140</td>
</tr>
<tr>
<td>11.4</td>
<td>Evaluation of Roll Force, Roll Torque and Mill Horsepower</td>
<td>140</td>
</tr>
<tr>
<td>11.5</td>
<td>Limiting Thickness and Limiting Reduction</td>
<td>141</td>
</tr>
<tr>
<td>11.6</td>
<td>Elementary Assessment of Roll Load</td>
<td>142</td>
</tr>
<tr>
<td>11.7</td>
<td>Strip Biting by Rolls</td>
<td>144</td>
</tr>
<tr>
<td>11.8</td>
<td>Determination of Forward Slip</td>
<td>145</td>
</tr>
</tbody>
</table>

Exercises 145

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.</td>
<td>FORGING</td>
<td>149–164</td>
</tr>
<tr>
<td>12.1</td>
<td>Introduction</td>
<td>149</td>
</tr>
<tr>
<td>12.2</td>
<td>Slow Speed Forging</td>
<td>150</td>
</tr>
<tr>
<td>12.3</td>
<td>Very High Speed Forging</td>
<td>156</td>
</tr>
<tr>
<td>12.4</td>
<td>Overall Forging Reduction</td>
<td>160</td>
</tr>
</tbody>
</table>

Exercises 161

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.</td>
<td>BENDING AND FORMING</td>
<td>165–171</td>
</tr>
<tr>
<td>13.1</td>
<td>Introduction</td>
<td>165</td>
</tr>
<tr>
<td>13.2</td>
<td>Stretch Forming</td>
<td>165</td>
</tr>
<tr>
<td>13.3</td>
<td>Bending</td>
<td>166</td>
</tr>
<tr>
<td>13.4</td>
<td>Spinning</td>
<td>168</td>
</tr>
</tbody>
</table>

Exercises 171

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.</td>
<td>SLIP LINE FIELD TECHNIQUE</td>
<td>172–184</td>
</tr>
<tr>
<td>14.1</td>
<td>Introduction</td>
<td>172</td>
</tr>
<tr>
<td>14.2</td>
<td>Stress Equations</td>
<td>172</td>
</tr>
<tr>
<td>14.3</td>
<td>Velocity Equations</td>
<td>175</td>
</tr>
<tr>
<td>14.4</td>
<td>Geometry of the Slip Line Field</td>
<td>176</td>
</tr>
<tr>
<td>14.5</td>
<td>Boundary Conditions</td>
<td>177</td>
</tr>
<tr>
<td>14.6</td>
<td>Some Simple Examples</td>
<td>179</td>
</tr>
<tr>
<td>14.6.1</td>
<td>State of Uniform Stress</td>
<td>179</td>
</tr>
<tr>
<td>14.6.2</td>
<td>Centred Fan</td>
<td>179</td>
</tr>
<tr>
<td>14.6.3</td>
<td>Plane Indenting Die</td>
<td>179</td>
</tr>
<tr>
<td>14.6.4</td>
<td>Machining</td>
<td>180</td>
</tr>
</tbody>
</table>

Exercises 182

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.</td>
<td>LOAD BOUNDING TECHNIQUE</td>
<td>185–209</td>
</tr>
<tr>
<td>15.1</td>
<td>Introduction</td>
<td>185</td>
</tr>
<tr>
<td>15.2</td>
<td>Upper-Bound Theorem</td>
<td>186</td>
</tr>
<tr>
<td>15.3</td>
<td>Examples</td>
<td>186</td>
</tr>
<tr>
<td>15.3.1</td>
<td>Strip Forging without Barrel</td>
<td>186</td>
</tr>
<tr>
<td>15.3.2</td>
<td>Solid Square Plate without Barrel</td>
<td>189</td>
</tr>
<tr>
<td>15.3.3</td>
<td>Solid Circular Disc without Barrel</td>
<td>190</td>
</tr>
<tr>
<td>15.3.4</td>
<td>Forging of Polygonal Disc with Barrel</td>
<td>193</td>
</tr>
</tbody>
</table>
15.3.5 Polygonal Disc with Bulging of Sides 198
15.3.6 Hollow Circular Disc without Barreling 204

Exercises 207

16. LUBRICATED METALWORKING PROCESSES 210–247
16.1 Introduction 210
16.2 Lubricated Forging Process 210
 16.2.1 Basic Assumptions 212
 16.2.2 Analysis 212
 16.2.3 Parametric Analysis 217
16.3 Lubricated Direct Extrusion 220
 16.3.1 Description and Assumptions 221
 16.3.2 Analysis 223
 16.3.3 Parametric Analysis 227
16.4 Lubricated Strip Drawing 231
 16.4.1 Description and Assumptions 231
 16.4.2 Analysis 232
 16.4.3 Parametric Analysis 235
16.5 Lubricated Strip Drawing with Newtonian Lubrication 240
16.6 Avenues Open on Research on Metalworking Lubrication 246
Exercises 247

17. COLD PROCESSING OF POLYMERS ... 248–264
17.1 Introduction 248
17.2 Cold Formability of Polymers 248
17.3 Interfacial Friction 249
17.4 Yield Criteria 250
17.5 Analysis for Pressure Distribution 251
 17.5.1 Initial Feeding Phase 252
 17.5.2 Rolling Phase 256
17.6 Roll Force 259
17.7 Roll Torque 260
17.8 Experimental Evidence 260
17.9 Parametric Analysis 261
 17.9.1 Pressure Distribution at Roll Workpiece Interface 262
 17.9.2 Effective Coefficient of Friction 263
 17.9.3 Roll Force and Roll Torque 263
Exercises 264

18. PROCESSING OF METAL POWDER PREFORMS 265–291
18.1 Introduction 265
18.2 Interfacial Friction 265
18.3 Yield Criterion 267
18.4 Basic Assumptions 267
18.5 Axisymmetric Condition 267
18.6 Plane Strain Condition 269
18.7 Experimental Verification 271
18.8 Results and Discussion 271
18.9 Deformation Through Conical Dies 276
 18.9.1 Theoretical Analysis 276
 18.9.2 Parametric Analysis 282

Exercises 290

19. HIGH ENERGY RATE FORMING .. 292–303

19.1 Introduction 292
19.2 High Energy Rate Forming Processes 292
19.3 Comparison of HERF and Conventional Methods 296
19.4 Types of Explosives 297
19.5 Explosive Forming Technique for Stand-Off Operations 298
19.6 Design of Explosive Forming Facilities 299

Exercises 303

20. ADVANCES IN MATERIAL PROCESSING 304–324

20.1 Introduction 304
20.2 Mechanical Working 305
 20.2.1 Processes Involving Progressive Deformation 305
 20.2.2 High Energy Rate Forming 308
 20.2.3 Composite Forming 310
 20.2.4 Other Processes 317
20.3 Machining Techniques 321
 20.3.1 Stretched Machining 321
 20.3.2 Hot Machining 321
 20.3.3 Cryogenic Machining 321
 20.3.4 Dynamic Cutting 321
 20.3.5 Oscillatory Machining 322
 20.3.6 Magnetic Machining 322
 20.3.7 Ballistic Machining 322
20.4 Modern Techniques Used in Instrumentation 322
20.5 Tooling Requirements 323

Exercises 324

21. COMPUTER APPLICATION IN METALWORKING 325–334

21.1 Introduction 325
21.2 CAD/CAM Applications 326
21.3 Development of Expert System for Sintered Forged Products 329
 21.3.1 Main Components of an Expert System 329
21.3.2 Basic Configuration Needed for an Expert Shell 331
21.3.3 Steps in Development 331
21.3.4 Knowledge-based System Approach for Forging Sintered Components 332

Exercises 333

Appendix A Comparison of Various Methods of Analysis of Forming Load ... 335–339
Appendix B Derivation of Reynolds Equation for Power Law Fluids .. 340–343
Appendix C Useful Tables ... 344–345
Appendix D Stress–Strain Curves for Various Materials ... 346
References/Bibliography ... 347–353
Index .. 355–358
Preface

Material Forming Technology is an interdisciplinary subject, encompassing the study of such topics as the behaviour and properties of metals, applied mechanics, metallurgy, heat transfer etc., and including the more practical and industrial aspects of the subject. In the past, the approach to the teaching of this subject was in general largely descriptive in nature, whereby only qualitative discussions of the processes and equipment were imparted to the students.

The current postgraduate and undergraduate syllabi for students of mechanical engineering, production engineering, and metallurgical engineering accommodate this subject matter in such order as to give them a better understanding of the engineering problems by presenting rational solutions which help in assimilating scientific principles.

This book is an attempt to present the subject of material forming technology by maintaining a proper balance between the theory and its applications. It is designed to serve as a textbook for the above engineering disciplines both at undergraduate and postgraduate levels. Besides, the book would be useful to practising engineers and researchers in the field of metal forming.

The first seven chapters are devoted to basic concepts and provide the students with a sound background in plasticity, in addition to highlighting the importance of friction and lubrication in metal forming processes. Only that portion of theory of plasticity is covered, which is relevant to the subsequent treatment of the subject matter of metalworking, because the book is not meant for the study of the theory of plasticity.

The remaining chapters cover specific forming processes and new and powerful techniques (load bounding and slip line field) for solving engineering problems in metal forming. The important factors in the study of individual processes such as force, power requirements, formability and machinability are briefly discussed. The analytical methods for the treatment of metal forming processes include the free-body equilibrium approach and energy methods. Friction characteristics at the interface are according to the constant shear factor, Coulomb’s friction law and the composite friction. The analysis is restricted only to plastic materials. In the final chapter, the application of computer-aided analysis to the metalworking processes has been demonstrated, which is the demand in this competitive scenario.
Because of the extensive information available in the field and desirability of exposing the student to other sources of knowledge, the references provided at the end of the book are somewhat more comprehensive than ordinarily found in a book of this nature.

I am indebted to many individuals for the help rendered on many fronts. This book has been an outcome of my extensive experience in teaching and guiding research in the field of technology. I wish to express my gratitude to all the distinguished authorities in the field whose works have inspired me in the preparation of my subject matter.

Finally, I would like to thank my family members for their patience, encouragement and cooperation during preparation of this manuscript.

Although great care has been taken to eliminate errors and misprints, it is inevitable that some will still be found. The author will appreciate being informed about these, and also welcome any comments and suggestions that the readers may wish to offer.

Surender Kumar
Nomenclature

Unless otherwise specified the following symbols have been used in the book:

- **A**: area
- **A_0**: dimensionless area ($A_0 = A_r/A$)
- **A_r**: real area of contact ($A_r = AA_0$)
- **a_i**: acceleration field
- **B**: coefficient, $B = b/h$; $B = \mu/\tan \alpha$
- **$2b$**: breadth or diameter of forging, width of rolled strip
- **D**: diameter
- **d**: depth
- **E**: modulus of elasticity
- **e**: strain, engineering strain
- **\dot{e}_0**: strain rate components
- **f**: feed rate
- **G**: torsion modulus, modulus of rigidity
- **g**: acceleration due to gravity
- **h**: thickness
- **h_0**: initial blank thickness
- **I_1, I_2, I_3**: stress invariants
- **J'**: upper bound energy consumption
- **J_1, J_2, J_3**: invariants (stress deviator, strain rate)
- **K**: yield stress in pure shear
- **l**: length
- **m**: constant, friction factor ($0 < m < 1$)
- **n**: normal unit vector, neutral point in rolling, strain hardening exponent, number of sides of polygonal disc
Nomenclature

\(O \) origin of co-ordinate system
\(P \) roll force, die load
\(p \) pressure
\(\bar{p} \) dimensionless die load, relative average pressure
\(R \) reduction
\(R_0 \) roll radius
\(r \) inner radius of bend, radius, radial distance
\(r, \theta, z \) cylindrical co-ordinate
\(r, \theta, \phi \) spherical co-ordinate
\(S \) surface of velocity discontinuity
\(S_{ij} \) components of stress deviator
\(S_i \) surface on which the stress vector \(T_i \) is prescribed
\(T \) torque
\(t \) time
\(U_i \) velocity
\(u_i \) displacement
\(V \) volume, velocity
\(v \) velocity
\(W \) work, work done per unit volume
\(\dot{W} \) power
\(x, y, z \) axes of a co-ordinate system

Greek Symbols

\(\alpha \) angle, die angle, bend angle, Mandrel angle
\(\alpha_i \) directional cosines
\(\alpha_2 \) angle of contact in rolling (plastic zone)
\(\beta \) barreling parameter
\(\gamma \) shearing strain
\(\eta \) coefficient of viscosity, efficiency
\(\Delta v \) velocity discontinuity, velocity difference
\(\varepsilon \) true strain
\(\varepsilon_0 \) effective strain
\(\dot{\varepsilon} \) true strain
\(\theta \) angular position
\(\mu \) coefficient of friction
\(\nu \) Poisson’s ratio
\(\mu, \nu \) Lode’s parameters
\(\rho \) density