Preface to the Revised Edition

A Textbook of Engineering Physics is originally designed to serve as a textbook as well as reference book for two semester course in Engineering Physics. The book is written with two distinct objectives: First to provide a single source of information and the second to present the principles of Physics as relevant to the B.E./B.Tech. students in an easy-to-understand style. In this edition, a new chapter number 40 namely “Geometrical Optics” has been added to make the book still more useful to the students. The requirements of the students are given priority and the material is moulded in a more student-friendly style. However, the spirit of Physics is not sacrificed at any stage and the expectations of teachers are held high at every step. It is generally felt that Physics is one more body of facts thrust on engineering students who are already burdened with a heavy syllabus and evolved through the efforts of rational thinkers who have been interested to know; why, what and how of natural phenomena.

Engineering has emerged as the application of their understanding for the benefit of human society at large. Thus Physics is the foundation on which stands the elaborate structure of technology. The main purpose of teaching Physics to Engineering undergraduates is to acquaint the budding engineers with the thread of development and the urge that underlies the presentation of the material in this book, so that they can apply this knowledge beneficially in their later pursuits.

The authors sincerely hope that this book will assist the students in learning the principles of Physics more effectively.

Enough care is taken to eliminate printing mistakes. However, some mistakes might have crept in inadvertently. The authors appeal to the readers to point out such left-out mistakes. The authors are also highly indebted to the teachers in various engineering institutions who have been extending unstinted support to this book.

M.N.AVADHANULU
mna2005@rediffmail.com

Disclaimer : While the authors of this book have made every effort to avoid any mistake or omission and have used their skill, expertise and knowledge to the best of their capacity to provide accurate and updated information. The authors and S. Chand does not give any representation or warranty with respect to the accuracy or completeness of the contents of this publication and are selling this publication on the condition and understanding that they shall not be made liable in any manner whatsoever. S.Chand and the author expressly disclaim all and any liability/responsibility to any person, whether a purchaser or reader of this publication or not, in respect of anything and everything forming part of the contents of this publication. S. Chand shall not be responsible for any errors, omissions or damages arising out of the use of the information contained in this publication.

Further, the appearance of the personal name, location, place and incidence, if any; in the illustrations used herein is purely coincidental and work of imagination. Thus the same should in no manner be termed as defamatory to any individual.
Preface to the Ninth Revised Edition

“A Textbook of Engineering Physics” is written with two distinct objectives: to provide a single source of information for engineering undergraduates of different specializations and provide them a solid base in physics. Successive editions of the book incorporated topics as required by students pursuing their studies in various universities. In this new edition the contents are fine-tuned, modernized and updated at various stages.

Physics is not an isolated body of theories which merely serve vocational usefulness. What has been achieved in physics has sooner or later made tremendous impact on the technological growth of our society. To become active participants in the technological revolution, one has to necessarily acquaint himself with the methods of science. Mechanical memorizing of certain definitions and derivations does not belong to the method of science and as such is of little value to the student. The main purpose of teaching physics to engineering undergraduates is to equip them with an understanding of the “scientific method”, so that they may use the training beneficially in their higher pursuits. An earnest attempt is made in this direction right from the first edition of this book by blending careful presentation of fundamental concepts and methods of physics.

This edition retains the original theme of emphasis on concepts with less mathematical formalism. The practical applications are discussed at each stage. The question bank given at the end of each chapter is updated. At a number of places, points for refinement are noticed and those have been incorporated. We have gladly received and carefully considered suggestions from professors and students who have used earlier editions. Further suggestions for improvement of the quality and quantity of the content are most welcome.

M.N.AVADHANULU
mna2005@rediffmail.com
Acknowledgement

The authors offer their special thanks to Smt. Nirmala Gupta, Chairperson & Managing Director, Shri Amit Gupta, C.E.O., Shri Naveen Joshi, Executive vice-president (Publishing), Shri Bhagirath Kaushik, Vice president (Sales and Marketing), S.Chand & Company Ltd. and Shri Vijay, Branch Manager, Nagpur and their dedicated team for all their efforts in bringing out this book nicely and in time.

M.N.AVADHANULU
mna2005@rediffmail.com
Dedicated to

My Mother,
Maternal Uncles
Shri Mullapudi Suryanarayana,
Dr. Mullapudi Subba Rao and
Shri Mullapudi Satyanarayana,
and to
My Wife Suvarchala

Books are not paper and words but interaction with thinkers on a one-to-one basis, not of one generation but separated by hundreds and thousands of years

—Thomas Carlyle
Contents

Chapters

<table>
<thead>
<tr>
<th>Chapters</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. OSCILLATIONS AND WAVES</td>
<td>1 – 37</td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>1; 1.2 Oscillations</td>
</tr>
<tr>
<td>2. ELECTROSTATICS</td>
<td>38 - 64</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>38; 2.2 Electric Charges</td>
</tr>
<tr>
<td>3 MAGNETOSTATICS AND ELECTRODYNAMICS</td>
<td>65 – 78</td>
</tr>
<tr>
<td>3.1 Magnetic Field</td>
<td>65; 3.2 Magnetic Flux Density</td>
</tr>
<tr>
<td>4. ELECTROMAGNETIC WAVES</td>
<td>79 – 93</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>79; 4.2 Electromagnetic Waves</td>
</tr>
<tr>
<td>5. LIGHT</td>
<td>94 – 130</td>
</tr>
<tr>
<td>5.1 Introduction</td>
<td>94; 5.2 Nature of Light</td>
</tr>
</tbody>
</table>
98; 5.7 Total Internal Reflection 99; 5.8 Reflectivity and Transmissivity 100; 5.9 Absorption 101; 5.10 Wave Front and the Ray 102; 5.11 Mathematical Representation of a Plane Wave 103; 5.12 Light is an Electromagnetic Wave 106; 5.13 Visible Range 111; 5.14 Optical Path Length 112; 5.15 Phase Change and path Difference 113; 5.16 The Principle of Superposition 114; 5.17 Interference of Light Waves 115; 5.18 Young’s Double Slit Experiment 120; 5.19 Wave Trains—Light From Common Sources 121; 5.20 Coherence 122; 5.21 Double Slit Experiment Again 126; 5.22 Dispersion 127; 5.23 Scattering 128

6. INTERFERENCE 131 – 172
6.1 Introduction 131; 6.2 Interference 131; 6.3 Conditions for Observing Sustained Interference 133; 6.4 Techniques Of Obtaining Interference 133; 6.5 Review of Important Concepts 134; 6.6 Fresnel Bicrism 135; 6.7 Thin Film Interference 141; 6.8 Plane Parallel Film 142; 6.9 Variable Thickness (Wedge-Shaped) Film 146; 6.10 Colours in Thin Films 151; 6.11 Newton’s Rings 151; 6.12 Applications of Interference 158; 6.13 Michelson’s Interferometer 163; 6.14 Applications of Michelson Interferometer 166; 6.15 Moire Fringes 168

7. DIFFRACTION 173 – 197
7.1 Introduction 173; 7.2 Diffraction 173; 7.3 Distinction Between Interference and Diffraction 175; 7.4 The two Types of Diffraction 175; 7.5 Fraunhofer Diffraction at a Single Slit 176; 7.6 Fraunhofer Diffraction at Double Slit 182; 7.7 Diffraction Due to N-Slits—Diffraction Grating (Normal Incidence) 186; 7.8 Plane Diffraction Grating - Theory 186; 7.9 Resolving Power 193; 7.10 Resolving Power of a Plane Transmission Grating 194;

8. POLARIZATION 198 – 236
8.1 Introduction 198; 8.2 Polarization 198; 8.3 Unpolarized and Polarized Light 199; 8.4 Natural Light is Unpolarized Light 200; 8.5 Types of Polarization 201; 8.6 Production of Plane Polarized Light 204; 8.7 Polaroid Sheets 209; 8.8 Polarizer and Analyzer 209; 8.9 Malus’ Law 211; 8.10 Anisotropic Crystals 212; 8.11 Double Refraction in Calcite Crystal 214; 8.12 Nicol Prism 217; 8.13 Effect of Polarizer on Light of Different Polarizations 219; 8.14 Phase Difference Between E-Ray and O-Ray 219; 8.15 Superposition of Waves Linearly Polarised at Right Angles 221; 8.16 Retarders 224; 8.17 Production of Elliptically Polarized Light 227; 8.18 Production of Circularly Polarized Light 228; 8.19 Analysis of Polarized Light 229; 8.20 Applications of Polarized Light 230

9. OPTICAL ACTIVITY 237 – 252
9.1 Introduction 237; 9.2 Optical Rotation 237; 9.3 Specific Rotation 238; 9.4 Fresnel’s Explanation 238; 9.5 Polarimeter 239; 9.6 Electro-Optic and Magneto-Optic Effects 242; 9.7 Electro-Optic Effects 242; 9.8 Magneto-Optic Effects 244; 9.9 Anisotropy Induced by Mechanical Strain 245; 9.10 Photoelasticity 245

10 OPTICAL FIBRES 253 – 295
10.1 Introduction 253; 10.2 Optical Fibre 53; 10.3 Total Internal Reflection 257; 10.4 Propagation of Light Through an Optical Fibre 257; 10.5 Fractional Refractive Index Change 261; 10.6 Numerical Aperture 262; 10.7 Skip Distance and Number of Total Internal Reflections 263; 10.8 Modes of Propagation 264; 10.9 Types of Rays 265; 10.10 Classification of Optical Fibres 266; 10.11 The Three Types of Fibres 267;

11. ARCHITECTURAL ACOUSTICS 296 – 321
11.1 Introduction 296; 11.2 Sound 296; 11.3 Classification of Sound 298; 11.4 Characteristics of Musical Sound 298; 11.5 Weber-Fechner Law 299; 11.6 Sound Intensity Level - Decibel 300; 11.7 Human Audiogram 302; 11.8 Phon 302; 11.9 Sound Reflection 303; 11.10 Reverberation Time 304; 11.11 Sound Absorption 305; 11.12 Sabine’s Formula for Reverberation Time 306; 11.13 Reverberation Theory 307; 11.14 Determination of Absorption Coefficient 311; 11.15 Factors Affecting Acoustics of Buildings and their Remedies 312; 11.16 Acoustic Design of a Hall 315

12. ULTRASONICS 322 – 344

13. ELECTRON EMISSION 345 – 351

14. ELECTRON BALLISTICS 352 – 381

15. ELECTRON OPTICS 382 – 403
15.1 Introduction 382; 15.2 Bethe’s Law 382; 15.3 Electron Lens 384; 15.4 Focusing by Uniform Magnetic Fields 386; 15.5 Focusing by Axially Symmetric Magnetic Field 387; 15.6 Cathode Ray Tube 388; 15.7 Electromagnetic Deflection Type Crt 392; 15.8 Cathode Ray Oscilloscope 393; 15.9 Applications 398; 15.10 Other Applications of an Electron Beam 401; 15.11 Motion of Charged Particles in a Nonuniform Magnetic Field 401; 15.12 The Magnetic Bottle 402

16. ELEMENTS OF THERMODYNAMICS 404 – 429
16.1 Introduction 404; 16.2 Concept Of Temperature 404; 16.3 Heat 405; 16.4 Thermodynamics 406; 16.5 Terminology 407; 16.6 Work 411; 16.7 Heat in Thermodynamics 414; 16.8 Comparison of Heat and Work 414; 16.9 Internal Energy
18. SPECIAL THEORY OF RELATIVITY 450 – 482

19. ATOMIC PHYSICS 483 – 552

20. QUANTUM MECHANICS 553 – 616

20.1 Introduction 553; 20.2 De Broglie Hypothesis 554; 20.3 De Broglie’s Justification of Bohr’s Postulate 555; 20.4 De Broglie Waves are Insignificant in Case of Macro- Bodies 557; 20.5 Properties of Matter Waves 558; 20.6 Davisson–Germer Experiment 558; 20.8 Velocity of De Broglie Waves 560; 20.9 Wave Packet – Represents a Microparticle 561; 20.10 Applications of De Broglie Waves 564; 20.11 Heisenberg Uncertainty Principle 568; 20.12 Elementary Proof of Uncertainty Principle Using De Broglie Wave Concept 571; 20.13 Implication of Uncertainty

21. ATOMIC NUCLEUS AND NUCLEAR ENERGY 617 – 658

22. COSMIC RAYS AND ELEMENTARY PARTICLES 659 – 669

22.1 Introduction 659; 22.2 Primary Cosmic Rays 659; 22.3 Secondary Cosmic Rays 660; 22.4 Origin of Cosmic Rays 660; 22.5 Altitude Effect 660; 22.6 Latitude Effect 661; 22.7 Longitude Effect 662; 22.8 East-West Effect 662; 22.9 The Positron 662; 22.10 Pair Production 662; 22.11 Cosmic Ray Showers 663; 22.12 The Mesons 663; 22.13 Elementary Particles 664; 22.14 Classification of Elementary Particles 664; 2.15 Basic Forces in Nature 664; 22.16 Classification of Elementary Particles Basing on The Basic Forces 665; 22.17 Antiparticles 666; 22.18 Leptons 666; 22.19 Hadrons 667; 22.20 Resonances 668; 22.21 The Quark Model 668; 22.22 Other Models 669;

23. NUCLEAR INSTRUMENTS 670 – 700

23.1 Introduction 670; 23.2 Geiger-Muller Counter 670; 23.3 The Wilson Cloud Chamber 672; 23.4 Bubble Chamber 674; 23.5 Spark Chamber 675; 23.6 Scintillation Counter 675; 23.7 Solid State Detectors 676; 23.8 Cerenkov Detector 676; 23.9 Mass Spectrographs 677; 23.10 Yvon Mass Spectrograph 677; 23.11 Dempster Mass Spectrograph 680; 23.12 Bainbridge Mass Spectrograph 682; 23.13 Particle Accelerators 684; 23.14 Drift Tube Accelerator 685; 23.15 Cyclotron 687; 23.16 Synchrocyclotron 692; 23.17 Betatron 693; 23.18 Electron Synchrotron 697; 23.19 Proton Synchrotron 698

24. LASERS 701 – 738

24.1 Introduction 701; 24.2 Interaction of Light With Matter and the Three Quantum Processes 701; 24.3 Einstein Coefficients and their Relations 706; 24.4 Light Amplification 708; 24.5 Meeting the Three Requirements 709; 24.6 Components of Laser 711; 24.7 Lasing Action 712; 24.8 Pumping Methods 713; 24.9 Threshold
30. SEMICONDUCTORS 853 – 900

30.1 Introduction 853; 30.2 Crystal Structure 853; 30.3 Intrinsic Semiconductor 854; 30.4 Correlation Between Crystal Lattice and Energy Band Descriptions 856; 30.5 Holes 857; 30.6 Generation and Recombination 859; 30.7 Intrinsic Conductivity 860; 30.8 Carrier Concentrations 861; 30.9 Intrinsic Carrier Concentration 864; 30.10 The Fraction of Electrons in the Conduction Band 866; 30.11 Fermi Level in Intrinsic Semiconductor 867; 30.12 Variation of Intrinsic Conductivity with Temperature 870; 30.13 Determination of Band Gap 871; 30.14 Limitations of Intrinsic Semiconductor 872; 30.15 Extrinsic Semiconductors 872; 30.16 N-Type Semiconductor 873; 30.17 P-Type Semiconductor 877; 30.18 Band Diagrams of Extrinsic Semiconductors at 0K and 300K 880; 30.19 Extrinsic Conductivity 880; 30.20 Law of Mass Action 882; 30.21 Charge Neutrality Condition 883; 30.22 Fermi Level in Extrinsic Semiconductors 885; 30.24 Variation of Fermi Level with Impurity Concentration 886; 30.25 Drift and Diffusion Currents 887; 30.26 Minority Carrier Diffusion 889; 30.27 Compound Semiconductors 890; 30.28 Hall Effect 891

31. SEMICONDUCTOR DIODES 901 – 937

31.1 Introduction 901; 31.2 P-N Junction Diode 901; 31.3 P-N Junction Under Forward Bias 909; 31.4 P-N Junction Under Reverse Bias 913; 31.5 The Diode Equation 914; 31.6 Voltage-Ampere Characteristic 915; 31.7 Applications 917; 31.8 Zener Diode 919; 31.9 Varactor Diode 921; 31.10 Light Emitting Diode (LED) 923; 31.11 Photodetectors 925; 31.12 Solar Cell 930; 31.13 Light Sources for Fiber Optic Systems 933

32. BIPOLAR JUNCTION TRANSISTOR 938 – 951

32.1 Introduction 938; 32.2 Transistor Structure 938; 32.3 Schematic Representation 939; 32.4 Formation of Depletion Regions 939; 32.5 Energy Band Diagram of Unbiased Transistor 940; 32.6 Biasing the Transistor 941; 32.7 Circuit Configurations 941; 32.8 Action of the Bias 942; 32.9 Transistor Action 943; 32.10 Roles of Emitter, Base and Collector 945; 32.11 Relation Between Currents in CB Configuration 946; 32.12 Energy Band Diagram of a Transistor Biased in Normal Mode 947; 32.13 Common Emitter Configuration 948; 32.14 Current Relations in CE Configuration 949; 32.15 Transistor as an Amplifier 950

33. DIELECTRICS 952 – 993

33.1 Introduction 952; 33.2 Dielectrics 952; 33.3 Dielectric Constant 953; 33.4 Dielectric Polarization 953; 33.5 Gauss Law 954; 33.6 Dielectric Susceptibility 955; 33.7 The Three Field Vectors 955; 33.8 Relation Between E And X 956; 33.9 Relation Between P And E 956; 33.10 Induced Dipoles 957; 33.11 Permanent Dipoles 958; 33.12 Nonpolar And Polar Dielectrics 959; 33.13 Polarization-An Atomic View 960; 33.14 Types Of Polarization 961; 33.15 Temperature Dependence Of Polarization 968; 33.16 Frequency Dependence Of Total Polarization 969; 33.17 The Internal Field In Solids 970; 33.18 Lorentz Field 971; 33.19 Clausius-Mosotti Equation 973; 33.20 Dielectric Loss 974; 33.21 Dielectric Breakdown 978; 33.22 Applications 979; 33.23 Piezoelectricity 981; 33.24 Ferroelectricity 984; 33.25 Pyroelectricity 988; 33.26 Materials 988; 33.27 Applications 989

34. MAGNETIC MATERIALS 994 – 1030

34.1 Introduction 994; 34.2 Terms and Definitions 994; 34.3 Relation Between M R and X 996; 34.4 Origin of Magnetization 996; 34.5 Classification of Magnetic
35. SUPERCONDUCTIVITY
35.1 Introduction 1031
35.2 Superconductivity 1031
35.3 Materials (Low T_c Materials) 1032
35.4 Properties of Superconductors 1034
35.5 Other External Factors that Affect Superconductivity 1040
35.6 Type-I and Type-II Superconductors 1040
35.7 BCS Theory 1042
35.8 Josephson Effect 1043
35.9 High Superconductors 1045
35.10 Applications 1046

36. MODERN ENGINEERING MATERIALS
36.1 Introduction 1053
36.2 Metallic Glasses 1053
36.3 Liquid Crystals 1058
36.4 Shape Memory Alloys 1065
36.5 Biomaterials 1076

37. NON DESTRUCTIVE TESTING
37.1 Introduction 1081
37.2 Types of Defects 1081
37.3 Methods of NDT 1082
37.4 Visual Inspection 1082
37.5 Liquid/Dye Penetrant Testing 1082
37.6 Magnetic Particle Testing 1084
37.7 Eddy Current Testing 1085
37.8 Ultrasonic Inspection Method 1085
37.9 Advantages 1092
37.10 X-Ray Radiography 1092
37.11 X-Ray Fluoroscopy 1095
37.12 Comparison of Conventional and Real-Time Radiography 1095

38. VACUUM TECHNOLOGY
38.1 Introduction 1097
38.2 Vacuum 1097
38.3 Units of Vacuum 1097
38.4 Vacuum Ranges 1098
38.5 Production of Vacuum 1098
38.6 Classification of Vacuum Pumps 1098
38.7 Rotary Oil Pumps 1098
38.8 Diffusion Pump 1100
38.9 Turbomolecular Pumps 1101
38.10 Cryopumps 1102
38.11 Vacuum Gauges 1103
38.11.1 Thermocouple Gauge 1103
38.12 Vacuum Technology 1106
38.13 Applications of Vacuum 1106
38.14 High Vacuum Systems 1107
38.15 Thin Film Deposition 1108

39. NANOTECHNOLOGY
39.1 Introduction 1110
39.2 Nanoscale 1111
39.3 The Significance of the Nanoscale 1111
39.4 Nanotechnology 1112
39.5 What is Molecular Nanotechnology? 1112
39.6 Nanotechnologies in the Past 1113
39.7 Four Generations of Nanotechnology Development 1114
39.8 Why Nanotechnology? 1114
39.9 Production Techniques 1115
39.10 Tools 1118
39.11 Nanomaterials 1121
39.12 Nanolayers 1127
39.13 Nanoparticles 1126
39.14 Applications of Nanomaterials 1134
39.15 Carbon Nanomaterials 1137
39.16 Fullerens 1137
39.17 Carbon Nanotubes 1139
39.18 Nanowires 1144
39.19 Quantum Dots 1145
39.20 Dendrimers 1146
39.21 Nanocomposites 1146
39.22 Scaling Laws 1147
39.23 Nano Devices and Nanomachines 1153

40. GEOMETRICAL OPTICS
40.1 Introduction 1155
40.2 Thin Lenses 1155
40.3 Coaxial Lens Systems 1158
40.4 Cardinal Points 1159
40.5. Definitions and Properties of Cardinal Points And Planes 1159
40.6 Construction of Image Using Cardinal Points 1163
40.7 Nodal Slide 1165
40.8 Equivalent Focal Length of A Coaxial System of Two Thin Lenses 1168
40.9 Cardinal Points of A Coaxial System of Two Thin Lenses 1169
40.10 Eyepieces 1171
40.11 Huygens Eyepiece 1172
40.12 Ramsden Eyepiece 1175
40.13 Comparison Of Ramsden Eyepiece With Huygens Eyepiece 1178
A Textbook Of Engineering Physics

Publisher: SChand Publications
ISBN: 9788121908177
Author: M. N. Avadhanulu, P. G. Kshirsagar

Type the URL: http://www.kopykitab.com/product/11802

Get this eBook