REINFORCED CONCRETE STRUCTURES

VOLUME II

Dr. B.C. Punmia
Er. Ashok K. Jain
Dr. Arun K. Jain
REINFORCED CONCRETE STRUCTURES

(VOLUME II)

* 1992 *

[CONTAINING 27 CHAPTERS]
REINFORCED CONCRETE STRUCTURES
(VOLUME II)

By

Dr. B.C. PUNMIA
Formerly,
Professor and Head, Deptt. of Civil Engineering, &
Dean, Faculty of Engineering
M.B.M. Engineering College,
Jodhpur

Er. ASHOK KUMAR JAIN
Director,
Arihant Consultants,
Jodhpur

Dr. ARUN KUMAR JAIN
Assistant Professor
M.B.M. Engineering College,
Jodhpur

THOROUGHLY REVISED AND ENLARGED INCORPORATING WORKING STRESS AND LIMIT STATE DESIGN METHODS

LAXMI PUBLICATIONS (P) LTD
(An ISO 9001:2008 Company)
BENGALURU • CHENNAI • COCHIN • GUWAHATI • HYDERABAD
JALANDHAR • KOLKATA • LUCKNOW • MUMBAI • RANCHI • NEW DELHI
BOSTON (USA) • ACCRA (GHANA) • NAIROBI (KENYA)
Preface

A concrete structure, either plain or reinforced, is unique among the many systems of modern construction. It is the only type of structure that is manufactured from its component materials (i.e., cement, aggregate and water) on the site of the work. Proper reinforced concrete construction depends upon men—men who understand the action of structures, men who know the characteristics and the limitations of the material that they are handling, and men who are conscientious and determined to conduct their work with honour to themselves and with credit to their profession.

The present text book, in its two volumes, presents modern methods of design both for ordinary as well as prestressed concrete structures. Volume I has 19 Chapters and deals with more common and elementary structures. The present volume, in its 12 Chapters, deals with more advanced topics. Chapter 1 deals with beams curved in plan that are mostly used for water tanks discussed in Chapter 2. Elementary water tanks have already been dealt with in Volume I. Chapter 3 deals with reinforced concrete pipes, mostly used for water supply. Chapter 4 covers the design of bunkers and silos while Chapter 5 deals with tall chimneys of reinforced concrete. Chapters 6 and 7 deal with portal frames and building frames respectively. Design of aqueducts and box culverts have been given in Chapter 8. More common types of concrete bridges—such as deck slab bridges, T-beam bridges and balanced cantilever bridges have been given in Chapter 9. Chapter 10 deals with the ultimate load design while Chapter 11 deals with the principles and design methods for prestressed concrete. Lastly, Chapter 12 deals with the stresses induced due to shrinkage and creep of concrete.

Each chapter begins with clear statements of pertinent definitions, design principles and theories, and the design procedures. The basic principles are supplemented with numerous design examples and illustrations, along with detailed drawings.

Various designs are based on latest Indian Standards. The tables or curves giving permissible stresses and/or design coefficients, as well as the basic rules for design, taken from the various Indian Standards are gratefully acknowledged. In spite of every care taken to check the numerical work, some errors may remain, and I shall be obliged for any intimation of these readers may discover.

Jodhpur

B.C. PUNMIA

26th Jan. 1980
Preface to the Second Edition

In the Second Edition, the subject matter has been thoroughly updated and the revised Indian Standard Codes IS : 456-1978 and IS : 1343-1980 have been introduced. Both these Codes differ from their earlier versions in two aspects: (1) Some design procedures have been basically changed and (2) the Codes use SI units. The Second Edition incorporates both these aspects. However, since the change over from the MKS to SI units has to be gradual, and since the revised Codes have yet not been included in the teaching curriculum of all the Institutions, the design procedures based on earlier versions of the Codes have been retained. The design procedures laid down in the Revised Codes have been given at the end of each chapter and the illustrative examples, using these new procedures have been solved in SI units. Limit State Design has been introduced in chapter 10 as well as in Chapter 11 on prestressed concrete. It is hoped the readers will find the book useful in interpreting the provisions of the new Codes. Further suggestions will be greatly appreciated.

Jodhpur
B.C. PUNMIA
1st January 1983.

Preface to the Third Edition

In the Third Edition of the book, the subject matter has been thoroughly revised and rewritten in SI units. Revised Indian Standard Codes IS : 456-1978 and IS 1343-1980 have been extensively used. Majority of the diagrams have been redrawn. The chapter on Limit State Design has been separated from the chapter on Ultimate Load Design. A new chapter on the 'Yield Line Theory and Design of Slabs' has been introduced at the end. With these changes, it is hoped, the book will be more useful to the students as well as practicing Engineers.

Jodhpur
B.C. PUNMIA
1st March 1987
Preface to the Fourth Edition

In the fourth edition of the book, the subject matter has been thoroughly revised and updated. Seven new chapter have been added on the Limit State Design. With the addition of the new chapters the reader will be better equipped with the latest design methods. It is hoped, the book will be equally useful to the practicing Engineers.

Jodhpur
25th April

B.C. PUNMIA
ASHOK KUMAR JAIN

Preface to the Fifth Edition

In the Fifth Edition, the book has been thoroughly revised, enlarged and updated. The number of chapters have been increased from 20 to 27. The book has been divided into six parts. Part 1, containing 5 chapters, is on Water Tanks. Part 2 is on Pipes, Silos and Chimneys and contains 3 chapters. Part 3 on Concrete Frames has 2 chapters. Part 4 is devoted to Concrete Bridges and has 2 chapters. Part 5, containing 13 chapters, is on Limit State Design. Lastly, Part 6, having 2 chapters is on Prestressed Concrete and Miscellaneous Topics. A large portion of the book is now devoted to the limit state design. Due to these additions and updation, the number of the pages in the book have been increased from 1005 to 1144. It is hoped, with these changes, the New Edition will be more useful to both the students as well as Field Engineers.

Jodhpur
15th Aug. 1992

B.C. PUNMIA
ASHOK KUMAR JAIN
ARUN KUMAR JAIN
Contents

PART I
WATER TANKS

CHAPTER 1. BEAMS CURVED IN PLAN

1.1. Introduction: Torsional moments in beams ... 1
1.2. Circular beam supported symmetrically ... 4
1.3. Semicircular beam simply supported on three equally spaced columns ... 11
1.4. Curved beam simply supported at ends and continuous over two equally spaced intermediate supports ... 17
1.5. Curved beam fixed at ends ... 20
1.6. Semi-circular beam with slab ... 26
1.7. Torsion factor ... 29
1.8. Stresses due to torsion in concrete beams ... 33
1.9. Indian standard Code for design for torsion (IS : 456-1978) ... 42
Problems ... 56

CHAPTER 2. DOMES

2.1. Introduction ... 57
2.2. Nature of stresses in spherical domes ... 57
2.3. Analysis of spherical domes ... 59
2.4. Stresses due to wind load ... 65
2.5. Design of R.C. domes ... 65
2.6. Conical domes ... 72
Problems ... 76

CHAPTER 3. CIRCULAR AND INTZE TANKS

3.1. Introduction ... 77
3.2. General design requirements according to Indian Standard Code of Practice (IS : 3370, Part II, 1965) ... 78
3.3. Joints in water tanks ... 83
3.4. Circular tank with rigid joint between floor and wall ... 86
3.5. I.S. Code method and other methods for cylindrical tanks ... 95
3.6. Design of flat base slab for elevated circular tanks ... 126
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7</td>
<td>Circular tank with domed bottom and roof</td>
<td>139</td>
</tr>
<tr>
<td>3.8</td>
<td>Intze tank</td>
<td>160</td>
</tr>
<tr>
<td>3.9</td>
<td>Effects of continuity</td>
<td>166</td>
</tr>
<tr>
<td>3.10</td>
<td>Design of tank supporting towers</td>
<td>166</td>
</tr>
<tr>
<td>3.11</td>
<td>Design of foundations</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>230</td>
</tr>
</tbody>
</table>

CHAPTER 4. RECTANGULAR TANKS

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>231</td>
</tr>
<tr>
<td>4.2</td>
<td>Approximate method</td>
<td>232</td>
</tr>
<tr>
<td>4.3</td>
<td>Exact method</td>
<td>241</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>260</td>
</tr>
</tbody>
</table>

CHAPTER 5. UNDERGROUND TANKS

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>261</td>
</tr>
<tr>
<td>5.2</td>
<td>Earth pressure on tank walls</td>
<td>261</td>
</tr>
<tr>
<td>5.3</td>
<td>Uplift pressure on the floor of the tank</td>
<td>264</td>
</tr>
<tr>
<td>5.4</td>
<td>Design of rectangular tank</td>
<td>264</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>278</td>
</tr>
</tbody>
</table>

PART II

PIPES, SILOS & CHIMNEYS

CHAPTER 6. REINFORCED CONCRETE PIPES

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Loads on pipes</td>
<td>281</td>
</tr>
<tr>
<td>6.2</td>
<td>Stresses due to hydrostatic pressure</td>
<td>282</td>
</tr>
<tr>
<td>6.3</td>
<td>Stresses due to self weight</td>
<td>283</td>
</tr>
<tr>
<td>6.4</td>
<td>Stresses due to weight of water inside</td>
<td>286</td>
</tr>
<tr>
<td>6.5</td>
<td>Stresses due to earthfill over haunches</td>
<td>287</td>
</tr>
<tr>
<td>6.6</td>
<td>Stresses due to uniformly distributed load on top</td>
<td>288</td>
</tr>
<tr>
<td>6.7</td>
<td>Stresses due to uniform pressure from sides</td>
<td>288</td>
</tr>
<tr>
<td>6.8</td>
<td>Stresses due to triangularly distributed load</td>
<td>289</td>
</tr>
<tr>
<td>6.9</td>
<td>Stresses due to point load on crown</td>
<td>290</td>
</tr>
<tr>
<td>6.10</td>
<td>Stresses due to over-burden and external loads</td>
<td>291</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>300</td>
</tr>
</tbody>
</table>

CHAPTER 7. BUNKERS AND SILOS

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>301</td>
</tr>
<tr>
<td>7.2</td>
<td>Janssen's theory</td>
<td>302</td>
</tr>
<tr>
<td>7.3</td>
<td>Airy's theory</td>
<td>306</td>
</tr>
<tr>
<td>7.4</td>
<td>Bunkers</td>
<td>311</td>
</tr>
<tr>
<td>7.5</td>
<td>Hopper bottom</td>
<td>313</td>
</tr>
<tr>
<td>7.6</td>
<td>Indian Standard on design of bins</td>
<td>316</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>340</td>
</tr>
</tbody>
</table>
CHAPTER 8. CHIMNEYS

8.1. Introduction ... 341
8.2. Wind pressure ... 341
8.3. Stresses in chimney shaft due to self-weight and wind ... 342
8.4. Stresses in horizontal reinforcement due to wind shear ... 347
8.5. Stresses due to temperature difference ... 348
8.6 Combined effect of self load, wind and temperature ... 350
8.7. Temperature stresses in horizontal reinforcement ... 355
8.8. Design of R.C. chimney ... 356
Problems ... 366

PART III
CONCRETE FRAMES

CHAPTER 9. PORTAL FRAMES

9.1. Introduction ... 369
9.2. Analysis of portal frames ... 370
9.3. Design of rectangular portal frame with vertical loads ... 370
9.4. Design of hinge at the base ... 385
Problems ... 386

CHAPTER 10. BUILDING FRAMES

10.1 Introduction ... 387
10.2. Substitute frames ... 388
10.3. Analysis for vertical loads ... 391
10.4. Methods of computing B.M. ... 394
10.5. Analysis of frames subjected to horizontal forces ... 407
10.6. Portal method ... 408
10.7. Cantilever method ... 410
10.8. Factor method ... 419
Problems ... 433

PART IV
CONCRETE BRIDGES

CHAPTER 11. AQUEDUCTS AND BOX CULVERTS

11.1. Aqueducts and syphon aqueducts ... 437
11.2. Design of an aqueduct ... 438
PART V
LIMIT STATE METHOD

CHAPTER 13. DESIGN CONCEPTS
- 13.1. Methods of design ... 661
- 13.2. Safety and serviceability requirements (IS : 456-1978) ... 663
- 13.3. Characteristic and design values and partial safety factors ... 664
 - Problems ... 666

CHAPTER 14. SINGLY REINFORCED SECTIONS
- 14.1. Limit state of collapse in flexure ... 667
- 14.2. Stress strain relationship for concrete ... 669
- 14.3. Stress-strain relationship for steel ... 669
- 14.4. Stress block parameters ... 672
- 14.5. Design stress block parameters (IS : 456-1978) ... 675
14.6. Singly reinforced rectangular beams ... 677
14.7. Procedure for finding moment of resistance ... 679
14.8. Design of rectangular beam section ... 682
Problems ... 692

CHAPTER 15. DOUBLY REINFORCED SECTIONS
15.1. Necessity ... 693
15.2. Stress block and N.A. ... 693
15.3. Determination of moment of resistance ... 695
15.4. Design of a doubly reinforced section ... 697
Problems ... 704

CHAPTER 16. T AND L-BEAMS
16.1. Introduction ... 705
16.2. Stress block and N.A. ... 706
16.3. Moment of resistance when \(x_e < D_f \) ... 707
16.4. Moment of resistance when N.A. falls in the web ... 708
16.5. IS Code procedure for finding moment of resistance (IS : 456-1978) ... 714
16.6. Design of T-beam ... 717
16.7. Doubly reinforced T-beams ... 727
Problems ... 738

CHAPTER 17. SHEAR, BOND AND TORSION
17.1. Limit state of collapse : Shear ... 739
17.2. Development length ... 746
17.3. Limit state of collapse : Torsion ... 749
Problems ... 753

CHAPTER 18. DESIGN OF BEAMS AND SLABS
18.1. Design of beams ... 753
18.2. Design of cantilever ... 760
18.3. Design of doubly reinforced beam ... 764
18.4. Design of one way slab ... 769
18.5. Design of one way continuous slab ... 775
18.6. Design of T-beam roof ... 785
Problems ... 785

CHAPTER 19. AXIALLY LOADED COLUMNS
19.1. Limit state of collapse : Compression ... 787
19.2. Short columns ... 789
19.3. Short axially loaded members in axial compression ... 789
19.4. Short axially loaded columns with minimum eccentricity ... 790
19.5. Design charts ... 791
19.6. Compression members with helical reinforcement ... 794
19.7. Design specifications (IS : 456-1978) ... 794
Problems ... 806

CHAPTER 20. COLUMNS WITH UNIAXIAL AND BIAXIAL BENDING
20.1. Introduction ... 807
20.2. Combined axial load and uniaxial bending ... 807
20.3. Construction of interaction curves for column design ... 810
20.4. Short columns subjected to axial load and biaxial bending ... 829
Problems ... 835

CHAPTER 21. DESIGN OF STAIR CASES
21.1. General notes on design of stairs ... 837
21.2 Design of stairs spanning horizontally ... 841
21.3. Design of dog-legged stair ... 843
21.4. Design of stairs with quarter space landing ... 846
Problems ... 859

CHAPTER 22. TWO-WAY SLABS
22.1. Introduction ... 851
22.2. Simply supported slab with corners free to lift (I.S. Code method) ... 852
22.3. Restrained slabs (I.S. Code method) ... 859
Problems ... 868

CHAPTER 23. CIRCULAR SLABS
23.1. Introduction ... 869
23.2 Slab freely supported at edges and carrying U.D.L ... 870
23.3. Slabs fixed at edges and carrying U.D.L ... 871
23.4. Slab simply supported at the edges with load w uniformly distributed along the circumference of a concentric circle ... 872
23.5. Slab simply supported at edges, with U.D.L inside a concentric circle ... 873
Problems ... 882

CHAPTER 24. YIELD LINE THEORY AND DESIGN OF SLABS
24.1. Introduction ... 883
24.2. Yield line patterns ... 884
24.3. Moment capacity along an yield line ... 888
24.4. Ultimate load on slabs ... 889
24.5. Analysis by virtual work method ... 890
24.6. Analysis by equilibrium method ... 902
Problems ... 913
CHAPTER 25. FOUNDATIONS

25.2. Isolated footing of uniform depth
25.3. Isolated sloped footing
Problems

PART VI
PRESTRESSED CONCRETE & MISCELLANEOUS TOPICS

CHAPTER 26. PRESTRESSED CONCRETE

26.1. Introduction
26.2. Basic concepts
26.3. Classification and types of prestressing
26.4. Prestressing systems: End anchorages
26.5. Losses of prestress
26.6. Computation of elongation of tendons
26.7. Properties of materials
26.8. Merits and demerits of prestressed concrete
26.9. Basic assumptions
26.10. Analysis of beams for flexure
26.11. Kern distances and efficiency of section
26.12. Design of sections for flexure: Magnel's method
26.13. Rectangular section
26.15. Alternative design procedure
26.16. Shear and diagonal tension
26.17. Stresses at anchorage
26.19. Procedure for limit state design
Problems

CHAPTER 27. SHRINKAGE AND CREEP

27.1. Introduction
27.2. Shrinkage of concrete
27.3. Shrinkage stresses in symmetrically reinforced sections
27.4. Shrinkage stresses in singly reinforced beams
27.5. Instantaneous and repeated loading on concrete
27.6. Sustained loading: Creep

Reinforced Concrete Structures Vol II

Publisher: Laxmi Publications ISBN: 9788131806661 Author: B C Punmia And A K Jain

Type the URL: http://www.kopykitab.com/product/10717

Get this eBook