Fundamentals of
Structural Mechanics and Analysis

M.L. Gambhir
Formerly
Professor and Head
Department of Civil Engineering
and
Dean, Planning and Resource Generation
Thapar University, Patiala

PHI Learning Private Limited
New Delhi-110001
2011
To
The Society

to whom we owe a lot
1. Structures: An Introduction 1–21
 1.1 Anatomy of Structures 1
 1.2 Loads Acting on a Structure 2
 1.3 Classification of Structures 3
 1.3.1 Classification Based on Geometry 3
 1.3.2 Classification Based on Stiffness 4
 1.3.3 Classification Based on Materials of Construction 5
 1.3.4 Classification Based on Load Transfer Mechanism 5
 1.4 Basic Structural Elements and Systems 5
 1.4.1 One-dimensional Element 5
 1.5 Basic Requirements of Structures 10
 1.5.1 Structural Stability 10
 1.5.2 Internal Stress Resultants 11
 1.6 Support Systems 11
 1.7 Statically Determinate and Indeterminate Structures 14
 1.8 Structural Idealization 15
 1.9 Evolution of Structure 18
 1.10 Methods of Structural Analysis 19
 1.10.1 Linearity of Structural System 19
 1.10.2 Modelling a Structure 20
 1.10.3 Methods for Analysis of Skeleton Structures 21
 Review Questions 21

2. Basic Concepts and Analysis Tools 22–102
 2.1 Introduction 22
 2.2 Forces and Their Management 23
 2.2.1 Specifying a Force 23
 2.2.2 Parallelogram of Forces 24
Contents

2.2.3 Moments 27
2.2.4 The Resultant of a System of Parallel Forces 29
2.2.5 Equilibrant of a System of Concurrent Forces 30
2.2.6 Equivalent Force Systems 31

2.3 Equilibrium of Structures 31
2.3.1 Special Equilibrium Cases 33
2.3.2 Sign Convention 33

2.4 Free Body Diagrams 34

2.5 Reactive Forces 36
2.5.1 Support Conditions 37
2.5.2 Boundary Conditions 38
2.5.3 Structure with Cable or Elastically Supported End 44
2.5.4 Multi-Span Statically Determinate Beams or Cantilevered Beams 46
2.5.5 Plane Frame 49

2.6 Principle of Superposition 50

2.7 Stresses 51
2.7.1 Normal Stress 51
2.7.2 Shear Stress 51

2.8 Flexibility and Stiffness 52

2.9 Energy Methods 54
2.9.1 Conservation of Energy 54
2.9.2 The Work 54
2.9.3 Work of Externally Applied Forces 55
2.9.4 Complementary Work 56
2.9.5 Eigen Work and Displacement Work 57
2.9.6 Work of Internal Forces: Strain Energy 58
2.9.7 Strain Energy for Deformed Members 59

2.10 Real Work Equation 61

2.11 Virtual Work Methods 62
2.11.1 General 62
2.11.2 Virtual Work 64
2.11.3 Virtual Work and Complementary Virtual Work 64
2.11.4 Applications of Virtual Work Methods 69
2.11.5 Unit-Load and Unit-Displacement Methods 70
2.11.6 Graphical Integration 71

2.12 Important Theorems of Energy Methods 76
2.12.1 Reciprocal Relations 76
2.12.2 Cotterill–Castigliano’s Theorems 78

2.13 Principle of Stationary Total Potential Energy 82
2.14 Principles of Complimentary Virtual Work and Stationary Complimentary Potential Energy 83
2.14.1 Complimentary Strain Energy and the Principle of Least Work 84

Review Questions 92
Problems 93

3. Cables and Suspension Bridges 103–154

3.1 Introduction 103
3.2 Suspended Cable 104
3.2.1 Cable Subjected to Concentrated Loads 104
3.2.2 Cable Subjected to Uniformly Distributed Load 108
3.2.3 Length of Cable 112
3.2.4 Temperature Stresses in the Cable 113

3.3 Cable Supports 116
3.3.1 Cable Passing Over Guide Pulleys 117
3.3.2 Cable Clamped to Saddle on Smooth Rollers Mounted on Top of Pier 117

3.4 Suspension Bridge 119

3.5 Cable with Three-hinged Stiffening Girder 119
3.5.1 Analysis of Three-hinged Stiffening Girder 119
3.5.2 Influence Line Diagrams for Three-hinged Stiffening Girder 125

3.6 Cable with Two-hinged Stiffening Girder 140
3.6.1 Analysis of Two-hinged Stiffening Girder 141
3.6.2 Temperature Stresses in Two-hinged Girder 141
3.6.3 Influence Lines Diagrams 142

Problems 151

4. The Plane Trusses 155–211

4.1 Introduction 155
4.2 Components of a Truss 156
4.3 Member Forces 156
4.4 Classification of Trusses 156

4.5 Analysis of Simple Plane Trusses 158
4.5.1 Assumptions 158
4.5.2 Truss Notation 158
4.5.3 Geometric Stability 159
4.5.4 Static Determinacy 159
4.5.5 The Principle of Analysis 161
4.5.6 Methods for Analysis and Sign Conventions 162
4.5.7 Member Force Notation 163

4.6 Method of Joints Equilibrium 164
4.6.1 Simplifying Conditions 167

4.7 Method of Sections or Moments 170
4.7.1 Effect of Height of Truss on the Member Forces 175
4.7.2 Trusses with Sub-divided Panels 176

4.8 Method of Tension Coefficients 177

4.9 Influence Lines for Simple Trusses 180
4.9.1 Parallel Chord Trusses 181
4.9.2 Non-parallel Chord Trusses 181
4.9.3 Trusses with Sub-divided Panels 181

4.10 Determination of Maximum Forces 181

4.11 Influence Lines for a Truss with Subdivided Panels 190

Problems 193

5. Three-dimensional or Space Trusses 212–230

5.1 Introduction 212
5.2 Basic Principles 213
5.2.1 Equations of Static Equilibrium 214
5.2.2 Stability of Space-trusses 215
5.2.3 Types of Support 215
5.3 Analysis of Space-trusses 216
 5.3.1 Method of Joints 217
 5.3.2 Method of Tension Coefficients 222
 5.3.3 Method of Sections 224

Problems 226

6. Analysis of Arches 231–272
 6.1 Introduction 231
 6.2 Three-hinged Arches 232
 6.2.1 Geometry of Three-hinged Arch 233
 6.2.2 Reactions and Forces at the Connections 236
 6.2.3 Reactions and Bending Moments 239
 6.2.4 Reactions and Forces in Framed Arches 248
 6.2.5 Normal Thrust and Radial Shear 249
 6.3 Influence Lines for Three-hinged Arches 252
 6.3.1 Horizontal Thrust H 253
 6.3.2 Bending Moment at a Section 254
 6.3.3 Normal Thrust and Radial Shear at a Section 255
 6.3.4 Maximum Bending Moments Due to the Moving Loads 255
 6.4 Analysis of Three-hinged Tied Arches 264
 6.5 Two-hinged and Fixed Arches 268

Problems 268

 7.1 Introduction 273
 7.2 Influence Lines for Beams 274
 7.2.1 Simple Beams 274
 7.2.2 Statically Determinate Beams with Hinges 279
 7.2.3 Statically Determinate Frames Reduced to Simple Beams 284
 7.2.4 Statically Determinate Beams Subjected to Indirect Loads 289
 7.3 Quantitative Influence Lines 296
 7.3.1 Müller–Breslau Principle 296
 7.4 Applications of Influence Lines 300
 7.5 Moving Loads 311
 7.5.1 Maximum Bending Moments and Shearing force Due to the Moving Loads 311
 7.6 Maximum Shearing Force Diagrams for Dead and Live Loads 326
 7.7 Equivalent Uniformly Distributed Load 330

Problems 331

8. Elastic Deflections 337–432
 8.1 Introduction 337
 8.2 Deformed Shapes of the Structures 338
 8.2.1 Members 338
 8.2.2 Joints 338
8.3 Beam Deflections by Direct Integration 341
 8.3.1 Governing Differential Equation 342
 8.3.2 Boundary Conditions 342
 8.3.3 Macaulay Procedure 349
8.4 Semi-geometrical Methods 353
8.5 The Moment–Area Method for Symmetrical Bending 353
 8.5.1 Application of Moment–Area Theorems 355
 8.5.2 Application with the Principle of Superposition 364
 8.5.3 Application to Statically Indeterminate Beams 367
8.6 Elastic Load Method 370
8.7 Application of Moment–Area and Elastic-load Methods 373
8.8 Conjugate-beam Method 376
 8.8.1 Basis of Development 376
 8.8.2 Boundary Conditions of the Conjugate Beam 377
8.9 Work–Energy Methods 384
 8.9.1 Real Work Method 384
 8.9.2 The Virtual Work Method 390
 8.9.3 The Principle of Superposition of Mechanical Work 399
8.10 Energy Theorems of Elastic Systems 400
8.11 Deflections Due to Unsymmetrical Bending 407
 Problems 413

9. An Introduction to Statically Indeterminate Structures 433–453
 9.1 General 433
 9.2 Determinacy of Beams and Frames 434
 9.2.1 Degree of Statical Indeterminacy 434
 9.2.2 General Relationship 439
 9.2.3 Degree of Kinematical Indeterminacy 439
 9.3 Determinacy of Pin-jointed Frames 440
 9.3.1 Plane Truss 440
 9.3.2 Pin-jointed Space Frame 441
 9.4 Structural Analysis 442
 9.4.1 Force–Displacement Relationship 442
 9.4.2 Methods of Analysis 443
 9.5 Principle of Superposition 444
 9.6 Fixed End Moments 445
 9.7 Concept of Symmetry 448
 Problems 451

10. Flexibility Method (Force or Consistent Deformation Method) 454–545
 10.1 Introduction 454
 10.2 Force or Flexibility Method 455
 10.2.1 Formulation of Elastic Equations 455
 10.2.2 Solution Procedure for Elastic Equations of the Structure 459
 10.3 Analysis of Indeterminate Beams 459
 10.3.1 Propped Cantilever Beam 459
 10.3.2 Continuous Beams 463
Contents

10.4 Settlement of Supports 468
10.5 Elastic Supports 471
10.6 The Three-moment Equation (Clapeyron Theorem) 479
10.6.1 Derivation of Three Moment Equation 479
10.6.2 Application of Three-moment Equations 483
10.7 Continuous Beams with Supports at Different Levels 485
10.8 Indeterminate Trusses 492
10.8.1 Analysis of Indeterminate Truss 493
10.8.2 Temperature Changes 495
10.8.3 Lack of Fit or Fabrication Errors 495
10.8.4 Composite Trusses 504
10.9 Two-hinged Arches 507
10.9.1 Secant Variation of Moment of Inertia of the Cross-Section 509
10.9.2 Applications to Different Types of Load Systems 511
10.9.3 Tied Arch or Bowstring Girder 519
10.10 Fixed-ended or Hingeless Arches 523
10.11 The Suspension Bridge 531
10.12 Choice of Force or Displacement Method 533
Problems 533

11.1 Introduction 546
11.2 Fundamental Force–Displacement Relationships 546
11.2.1 Derivation by Integration of Flexural Differential Equation 546
11.2.2 Derivation Based on the Moment-Area Theorems 551
11.3 Slope–Deflection Method 555
11.3.1 Sign Convention 555
11.3.2 Member End Moments for Single Span Beams 556
11.3.3 Joint Equilibrium Equations 557
11.3.4 Fixed-end Moments 557
11.4 Analysis of Statically Indeterminate Beams 559
11.4.1 General Procedure for Continuous Beams 574
11.5 Analysis of Frames without Side Sway 579
11.6 Frames with Side or Lateral Sway 585
Problems 595

12. System Approach 600–653

12.1 General 600
12.2 Analysis of Beams and Frames 602
12.2.1 Analysis of Beams 602
12.2.2 Analysis of Rigid Frames 608
12.3 Analysis of Pin-jointed Plane Frames (Trusses) 618
12.4 Analysis of Structures with Elastic Connections 625
12.5 Analysis of Grid 628
Problems 637

13.1 Introduction 654
13.2 Concept of Moment Distribution 654
13.3 Concept of Symmetric and Skew-symmetric Deformations 655
 13.3.1 Symmetric Case 655
 13.3.2 Skew-symmetric Case 655
13.4 Member Stiffness and Joint Distribution Factors 655
 13.4.1 Absolute and Relative Stiffness of Members 656
 13.4.2 Joint Distribution Factors 657
 13.4.3 Sign Convention 660
13.5 Analysis Procedure 660
13.6 Analysis for Settlement at Supports 668
13.7 Analysis of Frames 674
 13.7.1 Nonsway Frames 674
 13.7.2 Frames with Sidesway 676
13.8 Special Frames 687
 13.8.1 Rectangular Liquid Tank 687
 13.8.2 Box Culvert 689
13.9 Comparison between MDM and Matrix Methods 690

Problems 691

14. Direct Stiffness Method 697–771

14.1 Introduction 697
14.2 Basic Concepts 697
14.3 Notation 699
 14.3.1 Global and Local Coordinate Systems 699
 14.3.2 Joint and Member Notation 700
 14.3.3 Global and Local Displacements 700
 14.3.4 Global and Local Forces 701
14.4 Direct Stiffness Method 702
 14.4.1 Kinematic Degrees of Freedom 704
 14.4.2 Subdivision or Breaking the Structure 704
14.5 Formulation of Local Stiffness Matrix 704
14.6 Formulation of the Global Stiffness Matrix 708
 14.6.1 Transformation of Forces and Displacements 709
 14.6.2 Global Force–Displacement Relations 711
 14.6.3 Member Global Stiffness Matrix 711
 14.6.4 Interpretation of Stiffness Coefficients 713
 14.6.5 Compatibility Conditions 713
 14.6.6 Joint Equilibrium Equations 714
14.7 Construction of Stiffness Matrix, Force Vector and Displacement Vector 716
 14.7.1 Problem Definition 716
 14.7.2 Assembly of Structure Stiffness Matrix, and Displacement
 and Force Vectors 716
 14.7.3 Assembly Rules 717
14.8 Formulation of System of Equations 720
 14.8.1 Introduction of Boundary (Support) Conditions 720
 14.8.2 Computation of Displacements and Reactions 722
 14.8.3 Computation of Member Forces 722

14.9 Stiffness Matrix for the Frame Members 736
 14.9.1 Member Oriented Along Reference Axis Subjected to Pure Bending 737
 14.9.2 Arbitrarily Oriented Member Subjected to Pure Bending 750
 14.9.3 General Plane Frame Member with Combined Bending and Axial loads 753
 14.9.4 Three-dimensional Beam Element 755

14.10 Assembly of Structure Stiffness Matrix 756
14.11 Computer Implementation of the Stiffness Method 763
 14.11.1 Structural Analysis Software 764

Problems 764

15. An Introduction to Finite Element Method 772–838
15.1 Introduction 772
15.2 Basis of the Finite Element Method 773
15.3 Analysis Procedure 776
 15.3.1 Properties of Stiffness Matrices 779
15.4 Formulation of Finite Element 780
 15.4.1 Modelling of Various Parameters 780
 15.4.2 Approaches for Formulation of Finite Elements 781
15.5 Displacement Interpolation or Shape Functions 781
 15.5.1 Requirements for a Shape Function 783
 15.5.2 Derivation of Shape Function 783
15.6 Axial Force Rod or Truss Elements 784
 15.6.1 Element Shape Function 784
 15.6.2 Element Stiffness Matrix in Local Coordinates 787
 15.6.3 Element Stress Matrix in Local Coordinates 789
 15.6.4 Transformation of Element Stiffness and Stress Matrices to Global Coordinates 790
 15.6.5 Formation of Structural Governing Equation and Assembled Stiffness Matrix 790
15.7 Evaluation of Displacements and Reactions 792
15.8 Simple Beam Element 798
 15.8.1 Element Stiffness Matrix in Local Coordinates 801
 15.8.2 Transformation of Element Stiffness Matrix to Global Coordinates 803
 15.8.3 Beam Element with Combined Bending and Axial Loads 804
 15.8.4 Element Stress Matrix in Local Coordinates 804
 15.8.5 Element Stress Matrix in Global Coordinates 805
 15.8.6 Formation of Global or Structural Governing Equation 806
15.9 Structural Loads 810
 15.9.1 Work Equivalence Method 810
 15.9.2 Distributed Loads 811
 15.9.3 Concentrated Load Acting between the Nodes 813
15.10 Static Condensation 815
 15.10.1 Beam Element with Nodal Hinge 816
15.11 Bar of Varying Cross-section 819
15.12 Membrane Elements 820
 15.12.1 Plane Stress Condition 820
 15.12.2 Plane Strain Condition 820
 15.12.3 Constant Strain Triangle 821
 15.12.4 Formulation of Element Stiffness Matrix 825
 15.12.5 Four Node Quadrilateral Plane Stress Element 829
 15.12.6 3-D Solid Elements 832
15.13 Convergence 832
15.14 Types of Error 833
15.15 Structural Analysis Resources 833

Questions 833
Problems 835

16. Approximate Analysis of Indeterminate Structures 839–871

16.1 Introduction 839
16.2 Analysis of Indeterminate Trusses 840
16.3 Analysis of Portals and Industrial Frames 843
 16.3.1 Analysis 843
16.4 Analysis of Frame Subjected to Vertical Loads 847
16.5 Building Frame Subjected to Lateral Loads 851
 16.5.1 Cantilever Method 852
 16.5.2 Portal Method 856
 16.5.3 Wilbur’s Factor Method 862

Problems 866

Appendix A Review of Matrix Algebra 873–882

A.1 Introduction 873
A.2 Definitions 873
 A.2.1 Terminology and Notations 874
A.3 Basic Operations 874
 A.3.1 Matrix Addition 874
 A.3.2 Scalar Multiplication 874
 A.3.3 Matrix Multiplication 874
 A.3.4 Transpose 875
A.4 Square Matrices and Related Definitions 876
 A.4.1 Properties of Invertible Matrices 876
A.5 Determinant 877
 A.5.1 Values of Determinants of 2-by-2 Matrices 877
 A.5.2 Values of Determinants of 3-by-3 Matrices 877
 A.5.3 Other Properties of Determinants 879
A.6 The Minors and Cofactors of a Matrix 879
A.7 Methods of Matrix Inversion 880
A.8 Application of Matrices 882
 A.8.1 Solution of System of Linear Equations 882
 A.8.2 Eigenvalues 882
Appendix B Shear Force and Bending Moment Diagrams, and Deflection Formulae 883–897

B.1 Simply Supported Beam 883
B.2 Cantilever Beam 888
B.3 Beam Fixed at One End and Simply Supported at the Other 890
B.4 Beam Overhanging at One Support 892
B.5 Beam Overhanging at Both the Supports 895
B.6 Beam Fixed at Both the Supports 895

Bibliography 899–901

Suggested Further Reading 900

Index 903–906
Fundamentals Of Structural Mechanics And Analysis

Publisher : PHI Learning ISBN : 9788120342361 Author : Gambhir

Type the URL : http://www.kopykitab.com/product/10267

Get this eBook