Fundamentals of
REINFORCED CONCRETE DESIGN
Fundamentals of REINFORCED CONCRETE DESIGN

M.L. Gambhir
Formerly Professor and Head
Department of Civil Engineering
Dean, Planning and Resource Generation
Thapar Institute of Engineering and Technology
Patiala, Punjab

PHI Learning Private Limited
New Delhi - 110001
2011
To
The Society
To whom we owe a lot
Preface xv

1. INTRODUCTION TO REINFORCED CONCRETE 1-23

1.1 Introduction 1

1.2 Concrete-making Materials 2
 1.2.1 Cement 2
 1.2.2 Mineral Additives 3
 1.2.3 Aggregates 3
 1.2.4 Water 4
 1.2.5 Admixtures 4

1.3 Workability of Concrete 5

1.4 Proportioning of Concrete Mixes 5
 1.4.1 Quantities of Materials to Produce Specified Volume of Concrete 6
 1.4.2 Acceptance Criteria for Concrete 7

1.5 Properties of Hardened Concrete 8
 1.5.1 Compressive Strength 8
 1.5.2 Grades of Concrete 9
 1.5.3 Tensile Strength 9
 1.5.4 Bond Strength 9
 1.5.5 Stress-Strain Characteristics 9
 1.5.6 Modulus of Elasticity 10
 1.5.7 Poisson’s Ratio 11
1.5.8 Shrinkage 11
1.5.9 Temperature Variation 12
1.5.10 Creep of Concrete 12
1.5.11 Durability of Concrete 13
1.6 Reinforcement 15
1.6.1 Types of Reinforcement 15
1.6.2 Fabrication and Placement of Bars 17
1.7 Formwork 18
1.7.1 Stripping of Forms 18
1.8 Concrete Structural Systems 18
1.8.1 Slabs 19
1.8.2 Beams 19
1.8.3 Columns 20
1.8.4 Foundations 20
1.9 Design Approaches 20
Review Questions 22

2. DESIGN PRINCIPLES 24-40
2.1 Introduction 24
2.2 Reinforced Concrete Design Philosophies 25
2.2.1 Working Stress Design 25
2.2.2 Ultimate Load Design 27
2.2.3 Probabilistic Design 27
2.2.4 Limit States Design 28
2.2.5 Limit States 28
2.2.6 Multiple Safety Factors 30
2.2.7 Partial Safety Factors 31
2.3 Codal Recommendations for Limit States Design 32
2.3.1 Characteristic Values 32
2.3.2 Design Values 33
2.3.3 Factored Loads 35
2.3.4 Design Stress-Strain Curves 35
2.4 Design Codes 38
Review Questions 39

3. LIMIT STATE OF COLLAPSE—FLEXURE 41-86
3.1 Introduction 41
3.2 Analysis and Design for Flexure 41
3.3 Analysis of Singly Reinforced Rectangular Sections 43
3.3.1 Depth of the Neutral Axis 43
3.3.2 Maximum Depth of the Neutral Axis, \(x_{n,\text{max}} \) 44
3.3.3 Maximum Percentage of Steel, \(p_{\text{lim}} \) 46
3.3.4 Limiting or Ultimate Moment of Resistance 46
3.4 Analysis and Design of Rectangular Beams 50
 3.4.1 Types of Problems 50
3.5 Beams Reinforced in Tension and Compression 56
 3.5.1 Types of Problems 58
3.6 Analysis of the Flanged Beam Section 65
 3.6.1 Analysis of Flanged Section with Tension Reinforcement 67
3.7 Design of the Flanged Beam Section 74
 3.7.1 Flanged Beam with Tension Reinforcement 74
 3.7.2 Flanged Beam with Tension and Compression Reinforcements 78
3.8 Slabs 78

Review Questions 80
Tutorial Problems 82

4. LIMIT STATE OF COLLAPSE—SHEAR, BOND AND TORSION 87–132

4.1 Introduction 87
4.2 Limit State of Collapse—Shear 89
 4.2.1 Maximum Shear Stress in Concrete, $\tau_{c,\text{max}}$ 93
 4.2.2 Shear Reinforcement 94
 4.2.3 Maximum Spacing of Stirrups, $s_{v,\text{max}}$ 95
 4.2.4 Design Procedure for Shear Reinforcement 96
4.3 Limit State of Collapse—Torsion 103
 4.3.1 Analysis for Torsional Stresses 106
 4.3.2 Design of the Beam Section for Torsion 107
4.4 Limit State of Collapse—Bond 117
 4.4.1 Development Length 118
 4.4.2 Continuation of Reinforcement 122
4.5 Anchoring the Reinforcement 123
4.6 Curtailment of Tension Reinforcement 123
4.7 Reinforcement Splicing 124

Review Questions 128
Tutorial Problems 129

5. LIMIT STATE OF COLLAPSE—COMPRESSION 133–213

5.1 Introduction 133
5.2 Classification of Columns 133
 5.2.1 Classification According to Transverse Reinforcement 133
 5.2.2 Classification According to Dimensions and Support Conditions 135
 5.2.3 Classification According to the Type of Loading 135
 5.2.4 Braced and Unbraced Columns 136
5.3 Behaviour of Reinforced Concrete Columns 136
5.4 General Design Principles 137
 5.4.1 Longitudinal or Main Reinforcement 137
 5.4.2 Transverse Reinforcement 138
5.4.3 Helical Reinforcement 138
5.4.4 Cover 138
5.5 Effective Length 139
 5.5.1 Columns in Building Frames 140
5.6 Assumptions 142
5.7 Design of Axially Loaded Short Column (with negligible eccentricity, i.e., $e = 0$ to e_{min}) 143
5.8 Procedure for Design 144
5.9 Compression Member with Helical Reinforcement 148
5.10 Short Column Section Subjected to Combined Axial Load and Uniaxial Bending 153
5.11 Procedure for Analysis of the Section 156
5.12 Column Interaction Diagram 166
 5.12.1 Determination of Area of Steel 182
 5.12.2 Adequacy of the Column Cross-section 184
5.13 Section Subjected to Combined Axial Load and Biaxial Bending 185
 5.13.1 Breslar Method 186
 5.13.2 Equivalent Uniaxial Bending Moment Method 186
 5.13.3 Bresler’s Load Contour Approach 187
5.14 Slender Columns 191
 5.14.1 Calculation of P_{ub} 191
 5.14.2 Design Moments in Slender Columns 192
5.15 Shear Force in Columns Subjected to Moments 208
Review Questions 209
Tutorial Problems 211

6. LIMIT STATE OF SERVICEABILITY 214–236

6.1 Introduction 214
6.2 Deflection 214
 6.2.1 Deflection and Its Control 215
 6.2.2 Calculation of Deflection 220
 6.2.3 Control of Deflection at Site 229
6.3 Crack Formation and Its Control 230
 6.3.1 Beams 231
 6.3.2 Slabs 231
6.4 Calculation of Crack Width 232
6.5 Serviceability Limit State of Lateral Stability 233
6.6 Other Serviceability Requirements 234
Review Questions 234
Tutorial Problems 235
7. DESIGN OF KEY BUILDING ELEMENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>7.2</td>
<td>Guidelines for Selection of Member Sizes</td>
</tr>
<tr>
<td>7.2.1</td>
<td>General Guidelines for Beam Sizes</td>
</tr>
<tr>
<td>7.2.2</td>
<td>General Guidelines for Slab Thicknesses</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Deep Beams and Slender Beams</td>
</tr>
<tr>
<td>7.3</td>
<td>Design of Singly Reinforced Rectangular Sections</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Fixing Dimensions of Rectangular Section</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Determination of Area of Tension and Compression Steels</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Determination of Shear Reinforcement</td>
</tr>
<tr>
<td>7.3.4</td>
<td>Determination of Number of Tension and Compression Bars</td>
</tr>
<tr>
<td>7.3.5</td>
<td>Use of Design Aids</td>
</tr>
<tr>
<td>7.3.6</td>
<td>Design Check for Strength and Deflection Control</td>
</tr>
<tr>
<td>7.4</td>
<td>Design of Basic Building Components Subjected to Flexure</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Estimation of Loads</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Design Procedure</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Design of a Rectangular Beam</td>
</tr>
<tr>
<td>7.4.4</td>
<td>Design of Slabs</td>
</tr>
<tr>
<td>7.4.5</td>
<td>Design of a Lintel</td>
</tr>
<tr>
<td>7.4.6</td>
<td>Design of a Flanged Section</td>
</tr>
<tr>
<td>7.4.7</td>
<td>Design of Continuous Beams</td>
</tr>
<tr>
<td>7.5</td>
<td>Design of Staircases</td>
</tr>
<tr>
<td>7.5.1</td>
<td>Gravity Loads</td>
</tr>
<tr>
<td>7.6</td>
<td>Design of Compression Members</td>
</tr>
<tr>
<td>7.6.1</td>
<td>Axially Loaded Short Column</td>
</tr>
<tr>
<td>7.6.2</td>
<td>Column Subjected to Combined Axial Load and Uniaxial Bending</td>
</tr>
<tr>
<td>7.6.3</td>
<td>Column Subjected to Axial Load and Biaxial Bending</td>
</tr>
<tr>
<td>7.6.4</td>
<td>Slender Columns</td>
</tr>
<tr>
<td>7.6.5</td>
<td>Design Column Interaction Diagrams</td>
</tr>
<tr>
<td>7.7</td>
<td>Concrete Walls Carrying Vertical Loads</td>
</tr>
<tr>
<td>7.7.1</td>
<td>Classification</td>
</tr>
<tr>
<td>7.7.2</td>
<td>Reinforcement Detailing</td>
</tr>
<tr>
<td>7.7.3</td>
<td>Design of Reinforced Concrete Walls</td>
</tr>
<tr>
<td>7.8</td>
<td>Design of Tension Members</td>
</tr>
<tr>
<td>7.8.1</td>
<td>Member in Direct Tension</td>
</tr>
<tr>
<td>7.8.2</td>
<td>Member Subjected to Bending and Direct Tension</td>
</tr>
<tr>
<td>7.9</td>
<td>Design of Foundations</td>
</tr>
<tr>
<td>7.9.1</td>
<td>General Design Considerations</td>
</tr>
<tr>
<td>7.9.2</td>
<td>Design Procedure</td>
</tr>
<tr>
<td>7.9.3</td>
<td>Spread Footings for Walls</td>
</tr>
<tr>
<td>7.9.4</td>
<td>Design of Isolated or Independent Footing</td>
</tr>
<tr>
<td>7.10</td>
<td>Basement Wall</td>
</tr>
</tbody>
</table>

Review Questions 353

Tutorial Problems 355
8. DETAILING THE REINFORCEMENT 359-390

8.1 Introduction 359
8.2 Detailed Structural Drawings 360
8.3 Reinforcement Layout for Flexural Members 361
 8.3.1 Detailing of Slabs 361
 8.3.2 Detailing of Beams 361
 8.3.3 Member with a Change in Direction 363
 8.3.4 Edge Beams 364
 8.3.5 Detailing of Support Points 364
 8.3.6 Corners of Walls 365
8.4 Detailing of Compression Members 365
 8.4.1 Longitudinal Reinforcement 366
 8.4.2 Transverse Reinforcement 369
8.5 Detailing of Joints 372
 8.5.1 Beams or Girders Intersection Joints (Grid-joints) 372
 8.5.2 Beam and Column Joints (Rigid-frame joints) 372
 8.5.3 Corner Joints 373
 8.5.4 Exterior and Interior Joints 374
8.6 Bar Supports and Cover 374
8.7 Deflection Control 375
8.8 Symbols for Detailing 375
8.9 Design and Detailing for Ductility 377
 8.9.1 Significance of Ductility 378
 8.9.2 Ductility of Beams 379
 8.9.3 Detailing for Ductility 381

Review Questions 388
Tutorial Problems 389

APPENDIX A WORKING STRESS DESIGN METHOD 391-465

A.1 Introduction 391
A.2 Flexure 392
 A.2.1 Rectangular Beams Reinforced in Tension 393
 A.2.2 Design of Rectangular Beams 401
 A.2.3 Rectangular Beams Reinforced in Tension and Compression 405
 A.2.4 Flanged Beams 415
A.3 Shear 433
 A.3.1 Shear Strength of Concrete without Shear Reinforcement \(\tau_c \) 433
 A.3.2 Maximum Shear Stress \(\tau_{c,\text{max}} \) 434
 A.3.3 Shear Reinforcement 435
 A.3.4 Design Procedure for Shear Reinforcement 436
A.4 Bond and Development Length 440
A.5 Compression Members 442
 A.5.1 Analysis of Axially Loaded Columns 442
 A.5.2 Design of Axially Loaded Columns 445
 A.5.3 Section Subjected to Combined Direct Load and Uniaxial Bending 449
 A.5.4 Section Subjected to Combined Direct Load and Biaxial Bending 453

Tutorial Problems 460

APPENDIX B GRAVITY LOADS 466–470
APPENDIX C DESIGN FORCES 471–472
APPENDIX D DESIGN AIDS 473–503
APPENDIX E STEEL PROPERTIES: REINFORCEMENT 504–510
APPENDIX F REFERENCES 511–513
INDEX 515–519
The book is primarily designed to be an applied text to cater to the class-room or self-study needs of students at undergraduate level in Civil Engineering. It covers all the basic topics of reinforced concrete design generally taught in first course in Civil Engineering curriculum in Indian Universities. It presents, in simple terms, the basic principles of reinforced concrete design, a thorough knowledge of which is essential for proper understanding of current design practices and code provisions. It conforms to the limit states design method as given in the latest revision of IS:456. The traditional working stress design method is given in the appendix for the use in investigation of limit states of serviceability and for design in the situations where the use of limit states design approach is not convenient.

In writing this text I have mainly drawn on my lecture notes developed while teaching the subject and on the experience accumulated over the years as a result of both research and consultancy. Considerable effort has been devoted to the detailed discussion of basic concepts, behaviour of various structural components under loads, and development of fundamental expressions for analysis and design. The emphasis is on clarity of concept and development of structural sense needed for proper detailing. The text presents efficient and systematic procedures for solving design problems. In addition to the discussion of basis for design calculations, a large number of worked-out practical design examples based on the appropriate codes and current design practices have been included to illustrate salient features of reinforced concrete design. A wide variety of well-labelled diagrams are provided throughout the text to help the reader to develop sound judgement in practical design. Review questions and tutorial problems are included at the end of each chapter for class-room or self-study to facilitate thorough comprehension of the fundamentals.
In Chapter 1, a concise discussion on the properties of concrete and steel has been included to give the reader a feel for constituent materials of total structural system. Chapter 2 compares various design approaches to reinforced concrete design and discusses the codal recommendations. Chapters 3 to 6 deal with limit states of collapse in flexure; shear, bond, and torsion; compression, and limit state of serviceability. In Chapter 7, the application of basic principles discussed in preceding chapters to the design of key building components has been given to enable the reader to undertake the practical design of a common range of structures. Chapter 8 on detailing the structures describes good detailing and construction practices. The detailing of steel is considered to be an art and is carried out according to the stipulations given in approved manuals for integrated action in various parts of the structure. The durability and serviceability aspects have been given due consideration for an efficient reinforced concrete design.

Time saving analysis and design aids in the form of tables and charts have been developed for use in the design office. The relevant algorithms used in development of design aids are explained in details. The design aids would prove extremely useful to the practicing engineers engaged in actual practice. There has been conscious effort to present results in non-dimensional form to facilitate the application to different materials and cross-sectional dimensions. A large amount of practical data in tabular form is given in the appendix for the use in design office.

Extensive reference is made to IS code provisions, but care is taken to avoid overdependence on the code to enable the reader to rationally assess the design situation rather than blindly follow the code provisions. However, to maximize the benefits, the readers are advised to use IS:456, SP:16 and SP:34 along with the text keeping in mind that the code stipulations should be used as a guide only. A structural engineer must use his/her judgement in addition to calculations in interpretation of various provisions of the code to obtain an efficient and economical structure.

The subject matter, its format and presentation sequence has been class tested. It is hoped that the text will prove to be a dependable companion for teachers and practicing engineers.

I am thankful to the Bureau of Indian Standards for their published material to which references are made at numerous places in the text. I thank all those who have assisted in various ways in preparation of the text. Particularly I wish to acknowledge the assistance rendered by Dr. Puneet Gambhir in preparation of the manuscript. I am extremely grateful to my wife, Ms. Saroj Gambhir for the patience she has shown while I was busy completing the job. I express my gratitude to Ms. Neha Gambhir who has developed design aids and contributed in making the text possible.

I welcome suggestions from the readers for improvement in the subject matter in any manner.

M.L. GAMBHIR
CHAPTER 1

Introduction to Reinforced Concrete

1.1 INTRODUCTION

Concrete is the most widely used material for construction. It consists of a binding medium of cement and water called cement paste, and particles of relatively inert filler called aggregate (and sometimes admixture). The mixture, when placed in forms and allowed to cure, becomes hard like stone. The hardening is caused by chemical reaction between water and the cement, which continues for a long time, and consequently the concrete grows stronger with age.

The popularity of the concrete is due to the fact that from the common ingredients, it is possible to tailor the properties of concrete to meet the demands of any particular situation. The advances in concrete technology have paved the way to make the best use of locally available materials by judicious mix proportioning and proper workmanship, so as to produce concrete satisfying performance requirements.

The finished product (hardened concrete) has high compressive strength, but its tensile strength is very low—approximately one-tenth of its compressive strength. In situations where tensile stresses are developed the concrete is strengthened by steel bars forming a composite construction called reinforced cement concrete. The concrete without reinforcement is called plain concrete or simply concrete.

Thus, concrete making is not just a matter of mixing ingredients to produce a plastic mass, but good concrete has to satisfy the performance requirements in plastic or green state and also in the hardened state. In the plastic state the concrete should be workable and free from segregation and bleeding. Segregation is the separation of coarse aggregate, and bleeding is the separation of cement paste from the main mass. In its hardened state concrete should be strong,
Fundamentals Of Reinforced Concrete Design

Publisher: PHI Learning
ISBN: 9788120330481
Author: Gambhir

Type the URL: http://www.kopykitab.com/product/10263

Get this eBook