Matrix Methods of Structural Analysis
CONTENTS

Preface xi

1. INTRODUCTION 1–12
 1.1 Why Matrix Methods 1
 1.2 Types of Framed Structures 2
 1.3 Forces and Displacements 3
 1.4 Basic Structural Principles 4
 1.4.1 Condition of Equilibrium 5
 1.4.2 Compatibility of Deformations 6
 1.5 Static and Kinematic Indeterminacy 6
 1.5.1 Static Indeterminacy 6
 1.5.2 Kinematic Indeterminacy 9
 1.6 Flexibility and Stiffness Methods of Analysis 10
 1.7 Stiffness vs Flexibility Method 11

Problems 12

Part 1—Basics

2. MATRIX ALGEBRA 15–24
 2.1 Introduction 15
 2.2 Definitions 15
 2.3 Matrix Operations 17
 2.3.1 Addition and Subtraction 17
 2.3.2 Multiplication 17
 2.3.3 Transpose of Matrix 18
 2.3.4 Determinant of Matrix 19
 2.3.5 Inverse of Matrix 19
 2.3.6 Orthogonal Matrix 20
 2.3.7 Differentiating a Matrix 20
 2.3.8 Integrating a Matrix 20
2.4 Some Typical Matrix Operations 20
 2.4.1 Multiplication of Two Column Vectors (Matrices) 20
 2.4.2 Transpose of Product of Two Matrices 21
 2.4.3 Differentiating Expression of Quadratic Form 21
 2.4.4 Differentiating Product of Two Vectors 22
 2.4.5 Partitioning of Matrices 23

Problems 23

3. SOLUTION OF EQUATIONS 25–40
 3.1 Introduction 25
 3.2 Assembly and Storage of Equations 25
 3.2.1 Band Storage 26
 3.2.2 Skyline or Profile Storage 29
 3.3 Application of Boundary Condition 29
 3.3.1 First Method 29
 3.3.2 Second Method 30
 3.3.3 Third Method (Penalty Method) 31
 3.4 Solution of Equations 32
 3.4.1 Method of Gauss Elimination 33
 3.4.2 Cholesky’s Method (Crout’s Reduction) 35
 3.5 Frontal Method of Solution 38
 3.6 Closure 39
Problems 39
References 40

4. STIFFNESS AND FLEXIBILITY 41–54
 4.1 Introduction 41
 4.2 Stiffness and Flexibility 41
 4.2.1 The Elastic Spring 41
 4.2.2 A Bar Subjected to Axial Force 42
 4.2.3 A Cantilever Beam 42
 4.3 Flexibility Matrix and Stiffness Matrix Methods 45
 4.3.1 A Propped Cantilever Beam 46
 4.3.2 Structure with more than One Indeterminacy 48
Problems 53

Part 2—Structure (System) Approach

5. FLEXIBILITY MATRIX METHOD 57–81
 5.1 Introduction 57
 5.2 Description of the Method 57
 5.3 Evaluation of Flexibility Coefficients 59
 5.4 Steps in the Analysis 59
5.5 Examples

- 5.5.1 Analysis of Beams 60
- 5.5.2 Analysis of Plane Frames 69
- 5.5.3 Analysis of Pin-Jointed Plane Truss 74
- 5.5.4 Analysis of Truss for Lack of Fit/Temperature Changes 77

5.6 Conclusions 78

Problems 79

6. STIFFNESS MATRIX METHOD 82–106

- 6.1 Introduction 82
- 6.2 Description of the Method 83
- 6.3 Steps in the Analysis 88
- 6.4 Examples 88
 - 6.4.1 Analysis of Beams 88
 - 6.4.2 Analysis of Plane Frame 95
 - 6.4.3 Analysis of Pin-Jointed Plane Truss 100
- 6.5 Conclusions 103

Problems 104

Part 3—Stiffness Matrix Method—Member Approach

7. BASIC STEPS OF STIFFNESS METHOD 109–121

- 7.1 Introduction 109
- 7.2 Stiffness Matrix: The Elastic Spring 110
- 7.3 Spring Assemblage 111
- 7.4 Some Properties of Stiffness Matrix 113
- 7.5 Assembly of $[K]$ by Superposition (Direct Method) 114
- 7.6 Method of Solution 115
 - 7.6.1 Force in the Spring 115
- 7.7 Stiffness Matrix of a Bar Member 116
- 7.8 Steps in the Analysis 119
- 7.9 Closure 120

Problems 121

8. BEAMS 122–143

- 8.1 Introduction 122
- 8.2 Stiffness Matrix of a Beam Member 123
- 8.3 Equivalent Nodal Load Vector 125
- 8.4 Steps in the Analysis 126
- 8.5 Examples 127

Problems 142
9. PLANE TRUSS 144–175

9.1 Introduction 144
 9.1.1 Global Coordinate System 144
 9.1.2 Local Coordinate System 144
 9.1.3 Transformation Matrix or Rotation Matrix 145

9.2 Stiffness Matrix of Plane Truss Member 145
 9.2.1 Stiffness Matrix of Truss Member: Local Axis 145
 9.2.2 Transformation Matrix 147
 9.2.3 Stiffness Matrix of Truss Member: Global Axis 148
 9.2.4 Force in the Member 149

9.3 Steps in the Analysis 150

9.4 Examples 151

9.5 Some Important Features of Stiffness Matrix Method 167

Problems 174

10. PLANE FRAMES 176–200

10.1 Introduction 176

10.2 Stiffness Matrix of a Plane Frame Member 176
 10.2.1 Stiffness Matrix in Local Axis 177
 10.2.2 Transformation Matrix 178
 10.2.3 Stiffness Matrix and Nodal Force Vector with Respect to Global Axis 179

10.3 Steps in the Analysis 180

10.4 Examples 181

Problems 200

11. GRIDS 201–213

11.1 Introduction 201

11.2 Behaviour of Grid Member 201

11.3 Stiffness Matrix of a Grid Member 202
 11.3.1 Stiffness Matrix of a Member in Torsion 202
 11.3.2 Stiffness Matrix of a Grid Member in Local Axis 204
 11.3.3 Transformation Matrix 205
 11.3.4 Stiffness Matrix in Global Axis 207
 11.3.5 Equivalent Nodal Loads 207

11.4 Steps in the Analysis 207

11.5 Comparison between Grid and Plane Frame 212

Problems 212

12. SPACE TRUSSES AND SPACE FRAMES 214–230

12.1 Introduction 214

12.2 Space Trusses 214
 12.2.1 Stiffness Matrix of Member: Local Axis 215
 12.2.2 Transformation Matrix (Rotation Matrix) 216
 12.2.3 Stiffness Matrix of Member in Global Axis 217
 12.2.4 Steps in the Analysis 218
12.3 Space Frames 221
 12.3.1 Stiffness Matrix and Load Vector in Local Axis 222
 12.3.2 Transformation Matrix (Rotation Matrix) 224
 12.3.3 Stiffness Matrix and Load Vector in Global Axis 225
 12.3.4 Equivalent Nodal Force Vector 225
 12.3.5 Determination of Transformation Matrix \([T]\) of a Member 225
 12.3.6 Steps in the Analysis 227

12.4 Conclusions 229

Problems 229

13. ADDITIONAL TOPICS 231–258
 13.1 Use of Symmetry and Anti-Symmetry 231
 13.2 Inclined Supports (Oblique Supports) 235
 13.3 Beams with Shearing Deformations 245
 13.3.1 Deformation in Beam due to Shear 245
 13.3.2 Stiffness Matrix of Beam with Shearing Deformation 246
 13.4 Member end Releases in Beams and Frames 248
 13.4.1 Moment Discontinuity (Moment Release in the Form of Hinge) 248
 13.5 Temperature Changes and Prestrains 251

Problems 256

Part 4—Educational Program

14. COMPUTER PROGRAM AND ILLUSTRATIVE EXAMPLES 261–284
 14.1 Introduction 261
 14.2 Structure of the Program 262
 14.3 Important Variables in the Program 264
 14.4 Explanation of Subroutines/Functions 265
 14.5 FORTRAN Program 265
 14.5.1 Guide to Input Data 266
 14.5.2 Illustrative Examples 267
 14.6 C Program 281
 14.6.1 Guide to Input Data 281
 14.6.2 Illustrative Examples 282

Appendices

A. Methods to Find Deflections 287–297
B. Slopes and Deflections in Beams 298–299
C. Fixed End Forces in Beams 300–301
D. Properties of Plane Areas 302–303

INDEX 305–309