Mechanical Vibrations and Industrial Noise Control

Lasithan L.G.
Assistant Professor
Department of Mechanical Engineering
College of Engineering
Adoor, Kerala

PHI Learning Private Limited
Delhi-110092
2014
To
My father L. Gopikuttan
Contents

Preface xi

1. Introduction to Vibration 1–38
 1.1 Definitions and Terminology 2
 1.2 Classification of Vibrations and Vibrating Systems 6
 1.2.1 Free and Forced Vibrations 6
 1.2.2 Linear and Nonlinear Vibrations 6
 1.2.3 Deterministic and Random Vibrations 7
 1.2.4 Longitudinal, Transverse and Torsional Vibrations 7
 1.2.5 Transient Vibrations 9
 1.3 Elementary Parts of Vibrating Systems 9
 1.3.1 Simple Harmonic Motion 9
 1.3.2 Addition of Two Simple Harmonic Motions 12
 1.3.3 Fourier Series and Harmonic Analysis 14
 1.3.4 Work Done by a Harmonic Motion 25
 1.3.5 Representing Harmonic Motion in Complex Form 26
 1.4 Equivalent Springs and Dashpots 28
 Practice Questions 36

 2.1 Free Vibration of an Undamped Translational System 40
 2.1.1 Equation of Motion of a Spring–Mass System—Energy Method 40
 2.1.2 Equation of Motion of a Spring–Mass System—Newton’s Method 41
 2.2 Torsional Vibration 43
 2.3 Natural Frequency of Free Longitudinal Vibrations 46
 2.3.1 Equilibrium Method 47
 2.3.2 Energy Method 49
 2.3.3 Rayleigh’s Method 49
 2.4 Natural Frequency of Free Transverse Vibrations 51
 2.5 Effect of the Inertia of Shaft on Longitudinal and Transverse Vibrations 52
 2.5.1 Longitudinal Vibration 52
 2.5.2 Transverse Vibration 54
2.6 Natural Frequency of Transverse Vibrations of Shafts or Beams under Different Types of Loads and End Conditions 55
 2.6.1 Natural Frequency of a Shaft Carrying a Single Concentrated Load 55
 2.6.2 Natural Frequency of a Shaft Carrying a Uniformly Distributed Load 56
2.7 Natural Frequency of Transverse Vibrations of a Shaft Subjected to System of Several Loads 60
 2.7.1 Energy (or Rayleigh’s) Method 60
 2.7.2 Dunkerley’s Method 61
Practice Questions 79

 3.1 Viscous Damping 84
 3.1.1 Energy Dissipated in Viscous Damping 86
 3.2 Free Vibrations with Viscous Damping 87
 3.2.1 Critical Damping Coefficient and the Damping Ratio 88
 3.3 Logarithmic Decrement 91
 3.4 Free Vibration with Coulomb Damping 92
 3.5 Torsional System with Viscous Damping 95
Practice Questions 110

 4.1 Harmonically Excited Vibration 114
 4.1.1 Response of an Undamped Single-Degree-of-Freedom System under Harmonic Force 115
 4.1.2 Beating Phenomenon 119
 4.2 Forced Vibration with Damping of Single-Degree-of-Freedom Systems 126
 4.3 Response of Damped Systems under Base Excitation 137
 4.4 Vibration Isolation and Transmissibility 141
 4.4.1 Vibration Isolation 141
 4.4.2 Transmissibility 142
 4.5 Rotating and Reciprocating Unbalances 148
 4.5.1 Rotating Unbalance 148
 4.5.2 Reciprocating Unbalance 150
 4.6 Critical Speed or Whirling Speed 157
 4.6.1 Whirling of Shafts without Air Damping 157
 4.6.2 Whirling of Shafts with Air Damping 159
 4.7 Forced Vibration with Coulomb Damping 167
Practice Questions 184

5. Vibration Measuring Instruments and Support Excitation 187–199
 5.1 Basic Idea of a Seismic Instrument and Support Excitation 188
 5.2 Seismometer 190
 5.3 Accelerometer 191
 5.4 Vibration Exciters 193
6. **Two Degree-of-Freedom Systems** 200–265
 - 6.1 Equations of Motion for a Two-Degree-of-Freedom System 200
 - 6.2 Forced Harmonic Vibration without Damping 202
 - 6.3 Undamped Free Vibrations 204
 - 6.4 Damped Free Vibrations 207
 - 6.5 Coordinate Coupling 221
 - 6.6 Principal Coordinates (Natural Coordinates) and Modal Matrix 224
 - 6.7 Torsional System 229
 - 6.8 Undamped Vibration Absorbers 232
 - 6.9 Orthogonality Principle 236
 - 6.10 Generalized Coordinates 239
 - 6.11 Lagrange’s Equations 240
 - Practice Questions 263

7. **Multidegree-of-Freedom Systems** 266–332
 - 7.1 Derivation of Equations of Motion 266
 - 7.2 Equations of Motion of a Spring–Mass–Damper System 267
 - 7.3 Influence Coefficients 269
 - 7.3.1 Stiffness Influence Coefficients 270
 - 7.3.2 Flexibility Influence Coefficients 271
 - 7.3.3 Maxwell’s Reciprocal Theorem 274
 - 7.3.4 Flexibility Coefficients to Write the Differential Equations of Motion for Multidegree-of-Freedom Systems 274
 - 7.3.5 Characteristics of Various Matrices 276
 - 7.4 Eigenvalue Problem 283
 - 7.4.1 Orthogonality of Eigenvectors 284
 - 7.4.2 Expansion Theorem 286
 - 7.4.3 Modal Matrix $[P]$ 286
 - 7.5 Modal Analysis 293
 - 7.5.1 Undamped Free Vibrations 293
 - 7.5.2 Damped Free Vibrations 298
 - 7.5.3 Forced Vibrations 302
 - Practice Questions 328

8. **Torsional Vibrations** 333–368
 - 8.1 Free Torsional Vibrations 333
 - 8.2 Effect of Inertia of Shaft on Torsional Vibrations 335
 - 8.3 Free Torsional Vibrations of a Single-Rotor System 336
 - 8.4 Free Torsional Vibrations of a Two-Rotor System 337
 - 8.5 Free Torsional Vibrations of a Three-Rotor System 339
Contents

8.6 Torsionally Equivalent Shaft 342
8.7 Free Torsional Vibrations of a Geared System 354
Practice Questions 364

- 9.1 Lateral or Transverse Vibrations of a String 369
 - 9.1.1 Eigenvalue Problem in Transverse Vibration of Strings 372
- 9.2 Longitudinal or Axial Vibrations of Bars 377
 - 9.2.1 Orthogonality of Normal Functions in Longitudinal Vibration of Bars 391
- 9.3 Torsional Vibration of a Uniform Shaft 393
- 9.4 Lateral or Transverse Vibration of Beams 398
 - 9.4.1 Orthogonality of Normal Functions 402
 - 9.4.2 Response of System by Modal Analysis 403
Practice Questions 412

- 10.1 Holzer’s Method 415
 - 10.1.1 Free-to-Free System (Semidefinite System) 416
 - 10.1.2 Torsional System 419
- 10.2 Rayleigh’s Method 427
- 10.3 Rayleigh–Ritz’s Method 436
- 10.4 Dunkerley’s Method 440
- 10.5 Stodola’s Method 441
 - 10.5.1 Steps Involved in the Method 442
- 10.6 Matrix Iteration 446
 - 10.6.1 Procedures 447
Practice Questions 455

11. Nonlinear and Self-Excited Vibrations 460–494

- 11.1 Nonlinear Systems and Superposition Principles 461
- 11.2 Examples of Nonlinear Vibration Problems 462
- 11.3 Exact Solution Method of Nonlinear Systems 465
- 11.4 Approximate Analytical Methods 466
 - 11.4.1 Perturbation Method 466
 - 11.4.2 Iterative Method 468
- 11.5 Graphical Methods 472
 - 11.5.1 Phase Plane 472
- 11.6 Stability of Equilibrium (Stability Analysis) 477
- 11.7 Self-excited Vibrations 480
 - 11.7.1 Dynamic Stability Analysis 481
 - 11.7.2 Self-excited Vibration and Dry Friction 482
 - 11.7.3 Flow Induced Vibrations 484
Practice Questions 492
12. Random Vibrations 495–518

12.1 Random Variables and Random Processes 495
12.2 Time Averaging and Expected Value 496
 12.2.1 Expected Value 496
 12.2.2 Mean Square Value 496
 12.2.3 Variance and Standard Deviation 496
12.3 Probability Distribution 497
 12.3.1 Mean and Standard Deviation 499
 12.3.2 Joint Probability Distribution of Several Random Variables 500
12.4 Correlation Functions of a Random Process 502
 12.4.1 Autocorrelation Function 503
 12.4.2 Stationary Random Process 504
 12.4.3 Ergodic Process 508
12.5 Power Spectral Density 511
 12.5.1 Wide-Band and Narrow-Band Processes 514

Practice Questions 517

13. Vibration under General Forcing Conditions 519–565

13.1 Laplace Transform 519
 13.1.1 Inverse Transforms 521
 13.1.2 Transforms of Derivatives 522
 13.1.3 Transforms of Particular Functions 523
13.2 Response to Impulse Excitation 527
13.3 Response to a Step Input 531
13.4 Response to a Pulse Input 532
 13.4.1 Rectangular Pulse 532
 13.4.2 Half Sinusoidal Pulse 537
13.5 Convolution Integral 540
13.6 Fourier Integral 544
 13.6.1 Response of a Single-Degree-of-Freedom System 545
13.7 Shock Response Spectrum 548
 13.7.1 Shock Response Spectrum of a Rectangular Pulse 549

Practice Questions 562

14. Noise 566–604

14.1 What is Noise 566
14.2 Characteristics of Sound 567
14.3 Decibel Scale 568
 14.3.1 Sound Intensity Level \((L_i)\) 569
 14.3.2 Sound Pressure Level (SPL or \(L_p\)) 569
 14.3.3 Sound Power Level \((L_w)\) 569
14.4 Addition, Subtraction and Averaging of Decibels 571
 14.4.1 Decibel Addition 571
 14.4.2 Decibel Subtraction 573
 14.4.3 Averaging of Decibels 573