Introduction to
PARTIAL DIFFERENTIAL EQUATIONS
THIRD EDITION

K. SANKARA RAO
Formerly Professor
Department of Mathematics
Anna University, Chennai
This book is dedicated with affection and gratitude to the memory of my respected Father
(Late) KOMMURI VENKATESWARLU
and
to my respected Mother
SHRIMATI VENKATARATNAMMA
Contents

Preface ix
Preface to the First and Second Edition xi

0. Partial Differential Equations of First Order 1–51

0.1 Introduction 1
0.2 Surfaces and Normals 2
0.3 Curves and Their Tangents 4
0.4 Formation of Partial Differential Equation 7
0.5 Solution of Partial Differential Equations of First Order 11
0.6 Integral Surfaces Passing Through a Given Curve 18
0.7 The Cauchy Problem for First Order Equations 21
0.8 Surfaces Orthogonal to a Given System of Surfaces 22
0.9 First Order Non-linear Equations 23
0.9.1 Cauchy Method of Characteristics 25
0.10 Compatible Systems of First Order Equations 33
0.11 Charpit’s Method 37
0.11.1 Special Types of First Order Equations 42

Exercises 49

1. Fundamental Concepts 52–105

1.1 Introduction 52
1.2 Classification of Second Order PDE 53
1.3 Canonical Forms 53
1.3.1 Canonical Form for Hyperbolic Equation 55
1.3.2 Canonical Form for Parabolic Equation 57
1.3.3 Canonical Form for Elliptic Equation 59
CONTENTS

1.4 Adjoint Operators 69
1.5 Riemann’s Method 71
1.6 Linear Partial Differential Equations with Constant Coefficients 84
 1.6.1 General Method for Finding CF of Reducible Non-homogeneous Linear PDE 86
 1.6.2 General Method to Find CF of Irreducible Non-homogeneous Linear PDE 89
 1.6.3 Methods for Finding the Particular Integral (PI) 90
1.7 Homogeneous Linear PDE with Constant Coefficients 97
 1.7.1 Finding the Complementary Function 98
 1.7.2 Methods for Finding the PI 99

Exercises 102

2. Elliptic Differential Equations 106–181

2.1 Occurrence of the Laplace and Poisson Equations 106
 2.1.1 Derivation of Laplace Equation 106
 2.1.2 Derivation of Poisson Equation 108
2.2 Boundary Value Problems (BVPs) 109
2.3 Some Important Mathematical Tools 110
2.4 Properties of Harmonic Functions 111
 2.4.1 The Spherical Mean 113
 2.4.2 Mean Value Theorem for Harmonic Functions 114
 2.4.3 Maximum-Minimum Principle and Consequences 115
2.5 Separation of Variables 122
2.6 Dirichlet Problem for a Rectangle 124
2.7 The Neumann Problem for a Rectangle 126
2.8 Interior Dirichlet Problem for a Circle 128
2.9 Exterior Dirichlet Problem for a Circle 132
2.10 Interior Neumann Problem for a Circle 136
2.11 Solution of Laplace Equation in Cylindrical Coordinates 138
2.12 Solution of Laplace Equation in Spherical Coordinates 146
2.13 Miscellaneous Examples 154

Exercises 178

3. Parabolic Differential Equations 182–231

3.1 Occurrence of the Diffusion Equation 182
3.2 Boundary Conditions 184
3.3 Elementary Solutions of the Diffusion Equation 185
3.4 Dirac Delta Function 189
3.5 Separation of Variables Method 195
3.6 Solution of Diffusion Equation in Cylindrical Coordinates 208
3.7 Solution of Diffusion Equation in Spherical Coordinates 211
3.8 Maximum-Minimum Principle and Consequences 215
3.9 Non-linear Equations (Models) 217
 3.9.1 Semilinear Equations 217
 3.9.2 Quasi-linear Equations 217
 3.9.3 Burger’s Equation 218
 3.9.4 Initial Value Problem for Burger’s Equation 219
3.10 Miscellaneous Examples 220

Exercises 229

 4.1 Occurrence of the Wave Equation 232
 4.2 Derivation of One-dimensional Wave Equation 233
 4.3 Solution of One-dimensional Wave Equation by Canonical Reduction 236
 4.4 The Initial Value Problem; D’Alembert’s Solution 240
 4.5 Vibrating String—Variables Separable Solution 245
 4.6 Forced Vibrations—Solution of Non-homogeneous Equation 254
 4.7 Boundary and Initial Value Problem for Two-dimensional Wave Equations—
 Method of Eigenfunction 257
 4.8 Periodic Solution of One-dimensional Wave Equation in Cylindrical Coordinates 260
 4.9 Periodic Solution of One-dimensional Wave Equation in Spherical Polar
 Coordinates 262
 4.10 Vibration of a Circular Membrane 264
 4.11 Uniqueness of the Solution for the Wave Equation 266
 4.12 Duhamel’s Principle 268
 4.13 Miscellaneous Examples 270

Exercises 279

5. Green’s Function 282–315
 5.1 Introduction 282
 5.2 Green’s Function for Laplace Equation 289
 5.3 The Methods of Images 295
 5.4 The Eigenfunction Method 302
 5.5 Green’s Function for the Wave Equation—Helmholtz Theorem 305
 5.6 Green’s Function for the Diffusion Equation 310

Exercises 314

 6.1 Introduction 316
 6.2 Transform of Some Elementary Functions 319
 6.3 Properties of Laplace Transform 321
 6.4 Transform of a Periodic Function 329
 6.5 Transform of Error Function 332
 6.6 Transform of Bessel’s Function 335
 6.7 Transform of Dirac Delta Function 337
CONTENTS

6.8 Inverse Transform 337
6.9 Convolution Theorem (Faltung Theorem) 344
6.10 Transform of Unit Step Function 349
6.11 Complex Inversion Formula (Mellin-Fourier Integral) 352
6.12 Solution of Ordinary Differential Equations 356
6.13 Solution of Partial Differential Equations 360
 6.13.1 Solution of Diffusion Equation 362
 6.13.2 Solution of Wave Equation 367
6.14 Miscellaneous Examples 375

Exercises 383

7. Fourier Transform Methods 388–446

7.1 Introduction 388
7.2 Fourier Integral Representations 388
 7.2.1 Fourier Integral Theorem 390
 7.2.2 Sine and Cosine Integral Representations 394
7.3 Fourier Transform Pairs 395
7.4 Transform of Elementary Functions 396
7.5 Properties of Fourier Transform 401
7.6 Convolution Theorem (Faltung Theorem) 412
7.7 Parseval’s Relation 414
7.8 Transform of Dirac Delta Function 416
7.9 Multiple Fourier Transforms 416
7.10 Finite Fourier Transforms 417
 7.10.1 Finite Sine Transform 418
 7.10.2 Finite Cosine Transform 419
7.11 Solution of Diffusion Equation 421
7.12 Solution of Wave Equation 425
7.13 Solution of Laplace Equation 428
7.14 Miscellaneous Examples 431

Exercises 443

Bibliography 447–448

Answers and Keys to Exercises 449–484

Index 485–488
Preface

The objective of this third edition is the same as in previous two editions: to provide a broad coverage of various mathematical techniques that are widely used for solving and to get analytical solutions to Partial Differential Equations of first and second order, which occur in science and engineering. In fact, while writing this book, I have been guided by a simple teaching philosophy: An ideal textbook should teach the students to solve problems. This book contains hundreds of carefully chosen worked-out examples, which introduce and clarify every new concept. The core material presented in the second edition remains unchanged.

I have updated the previous edition by adding new material as suggested by my active colleagues, friends and students.

Chapter 1 has been updated by adding new sections on both homogeneous and non-homogeneous linear PDEs, with constant coefficients, while Chapter 2 has been repeated as such with the only addition that a solution to Helmholtz equation using variables separable method is discussed in detail.

In Chapter 3, few models of non-linear PDEs have been introduced. In particular, the exact solution of the IVP for non-linear Burger’s equation is obtained using Cole–Hopf function.

Chapter 4 has been updated with additional comments and explanations, for better understanding of normal modes of vibrations of a stretched string.

Chapters 5–7 remain unchanged.

I wish to express my gratitude to various authors, whose works are referred to while writing this book, as listed in the Bibliography. Finally, I would like to thank all my old colleagues, friends and students, whose feedback has helped me to improve over previous two editions.

It is also a pleasure to thank the publisher, PHI Learning, for their careful processing of the manuscript both at the editorial and production stages.

Any suggestions, remarks and constructive comments for the improvement of text are always welcome.

K. SANKARA RAO