Foundation Engineering

P.C. VARGHESE
Honorary Professor, Anna University, Madras
Formerly, Professor and Head, Department of Civil Engineering
Indian Institute of Technology Madras, Chennai, and
UNESCO Chief Technical Advisor, University of Moratuwa, Sri Lanka
To

Professor Arthur Casagrande
under whose guidance the author started his studies
in Geotechnical Engineering
Contents

Preface
Acknowledgements
Introduction
Units

Chapter 1 Engineering Properties of Soils
1.1 Introduction
1.2 Models Used in Design of Foundations
1.3 Important Engineering Properties
1.4 Review of Physical Properties
1.5 Strength of Soils
1.6 Soil Parameters from Field Sounding Tests
1.7 Dynamic Penetration Tests
1.8 Static Cone Penetration Test (SCPT) (q_c)
1.9 Correlation between SCPT and SPT
1.10 In-situ Vane Shear Test
1.11 Estimation of Modulus of Subgrade Reaction and Modulus of Elasticity
1.12 Consolidation Properties of Clays
1.13 Settlement of Overconsolidated Clays
References

Chapter 2 Contact Pressures on Base of Footings
2.1 Introduction
2.2 Rigid and Flexible Foundations
2.3 Contact Pressures under Rigid and Flexible Footings
2.4 Concept of Modulus of Subgrade Reaction
2.5 Concept of Bulb of Pressure
2.6 Effect of Rigidity on Settlement Calculations
References
Contents

8.6 Allowable Pressures for Rafts in Cohesive Soils 154
8.7 Structural Design of Raft Foundations 156
8.8 Rigid Beam Analysis (Conventional Method) 158
8.9 Winkler Model Analysis 159
8.10 Solution as Plates or Beams on Elastic Half-space (Elastic Continuum) 161
8.11 Closed Form Solutions Based on Elastic Theory 162
8.12 ACI Methods for Analysis of Beams and Grids on Elastic Foundation 162
8.13 Raft-Superstructure Interaction 162
8.14 Tank Foundations 162
8.15 Summary 163

References 172

Chapter 9 Load Carrying Capacity of Piles by Static Formulae 173–209

9.1 Introduction 173
9.2 Types of Piles 173
9.3 Commonly Used Sizes — Structural Capacity 174
9.4 Barrette Foundations 174
9.5 IS Codes on Piles 174
9.6 Factors Affecting Choice of Type of Pile 175
9.7 Load Carrying Capacity 176
9.8 Effective Length—Point of Inflection 177
9.9 Historic Development of Static Method 177
9.10 Method 1—Static Formula (for Piles in Granular Soils) 180
9.11 Method 1—Static Formula (for Cohesive Soils) 183
9.12 Capacity of Piles in \(c - \phi \) Soils By Static Formula 186
9.13 Factor of Safety for Static Formula Based on Soil Properties 186
9.14 Limiting Capacity of Piles 187
9.15 Method 2—Meyerhof’s Formula for Driven Piles in Sand Based on SPT Values 187
9.16 Method 3— Load Carrying Capacity From Static Cone Penetration Tests 189
9.17 Negative Skin Friction 191
9.18 Comparison of Capacities of Driven and Bored Piles 193
9.19 Capacity of Piles Founded on Solid Rock 193
9.20 Socketing of Bored Piles in Weathered and Soft Rock 194
9.21 Buckling of Slender Piles 197
9.22 Uplift Resistance (Tension Capacity) of Piles 197
9.23 Tapered Piles 198
9.24 Bearing Areas of Driven Hollow and ‘H’ Piles 199
9.25 Summary 199

References 208

Chapter 10 Load Carrying Capacity of Piles by Dynamic Formulae 210–237

10.1 Introduction 210
10.2 Pile Driving Formulae 211
10.3 Determination of Temporary Elastic Compression During Driving 215
10.4 Selection of Pile Hammers 216
10.5 Driving Stresses in Piles 217
Chapter 11 Structural Design of Concrete Piles 238–252

11.1 Introduction 238
11.2 Cover To Be Used 238
11.3 Requirements of Concrete for Pile Works 238
11.4 Detailing of Steel in Cast In-situ Piles 239
11.5 Detailing of Longitudinal Steel in Pre-cast Piles 240
11.6 Links in Pre-cast Driven Piles (IS 2911 Part I Sec. 3) 241
11.7 Pre-stressed Concrete Piles 241
11.8 Pile Shoes 244
11.9 Pile to Pile Cap Connections 246
11.10 Design of Pile Caps 248
11.11 Deterioration of Concrete and Corrosion of Steel in Piles 248
11.12 Summary 248
References 252

Chapter 12 Construction of Cast in-situ Piles 253–259

12.1 Introduction 253
12.2 Construction of Driven Cast in-place Piles 253
12.3 Bored Cast in-situ Piles 254
12.4 Properties of Bentonite To Be Used 254
12.5 Methods of Advancing the Hole 256
12.6 Choice of Tools 257
12.7 Limitations of Bentonite Method 258
12.8 Action To Be Taken Before Concreting 258
12.9 Concreting of Piles 258
12.10 Summary 259
Reference 259

Chapter 13 Group Action and Lateral Resistance of Vertical Piles 260–284

13.1 Introduction 260
13.2 Minimum Spacing of Piles 260
13.3 Estimation of Group Bearing Capacity 260
13.4 Effect of Pile Arrangement 262
13.5 General Analysis of Pile Groups 262
Contents

13.6 Lateral Resistance of Single Pile 264
13.7 IS 2911 Method for Lateral Resistance of Piles 266
13.8 Broms Charts for Lateral Load Analysis on Single Piles 271
13.9 Analysis of Lateral Loads on Piles Using Finite Element Method 276
13.10 Improving Lateral Resistance of Piles 276
13.11 Summary 276

References 283

Chapter 14 Field Tests on Piles 285–294

14.1 Introduction 285
14.2 Types of Load Tests on Piles 286
14.3 Loading Arrangements for Vertical Load Test 286
14.4 Types of Vertical Load Tests on a Single Pile 287
14.5 Vertical Load Test on Pile Group 290
14.6 Nondestructive Tests (NDTs) on Piles 290
14.7 Other Field Tests on Piles 291

References 293

Chapter 15 Piled Raft Foundations 295–300

15.1 Introduction 295
15.2 Types of Piled Rafts 296
15.3 Transfer of Load to Piles in a Piled Raft 297
15.4 Design of Piled Raft for Settlement Reduction (Type 1 Piled Rafts) 297
15.5 Approximate Design of Piled Raft for Load Transmission [Type 2 Piled Rafts] 299
15.6 Effect of Various Parameters on Results of Analysis 299

References 300

Chapter 16 Lateral Earth Pressures on Rigid Walls 301–319

16.1 Introduction 301
16.2 Historical Development 301
16.3 Nature and Magnitudes of Earth Pressures 302
16.4 Pressures on Retaining Structures 304
16.5 Coulomb’s Theory of Earth Pressure 305
16.6 Culmann’s Graphical Construction for Active Pressure 309
16.7 Plastic Equilibrium of Soils — Active and Passive Rankine States 311
16.8 Effect of Submergence and Broken Back 312
16.9 Pressures Due to Soils with Cohesion 313
16.10 Economical Design of High Retaining Walls 315

References 319

Chapter 17 Effect of Superimposed Loads on Backfill and Empirical Design of Retaining Walls 320–333

17.1 Introduction 320
17.2 Case 1: Effect of Uniform Surcharge (q/m^2) 320