Mechanical Vibrations and Noise Engineering

A.G. Ambekar
Mechanical Vibrations and Noise Engineering

Ashok G. Ambekar
Technical Advisor and Former Director
Swami Vivekanand College of Engineering, Indore
and
Former Professor and Head
Mechanical Engineering Department
Shri Govindram Seksaria Institute of Technology and Science (SGSITS)
Indore

PHI Learning Private Limited
New Delhi-110001
2013
To
My grandson Chi. ISHAN
and
Granddaughters Chi. AYUSHI and Chi. ISHITA

through whose eyes I desire to peep into the future
Contents

Preface ix

1. FUNDAMENTALS AND BASIC CONCEPTS 1–35
 1.1 Introduction 1
 1.2 Importance 2
 1.3 Main Causes of Vibration 3
 1.4 Vector Method of Representing Harmonic Motion 4
 1.5 Characteristics of Vibration 6
 1.6 Harmonic Analysis 8
 1.6.1 Addition of Harmonic Motions 8
 1.6.2 Lissajous Figures: A case of harmonic motions directed along perpendicular lines 11
 1.6.3 Beats Phenomenon 11
 1.7 Work Done by a Harmonic Force on a Harmonic Motion 13
 1.8 Periodic, Non-harmonic Excitation: Fourier Series Analysis 15
 1.9 Evaluation of Coefficients of Fourier’s Series 17
 1.10 Mathematical Models 25
 1.11 Elements of a Vibratory System 26
 1.12 Lumped/Discrete Parameter and Continuous Distributed Parameter Systems 27
 1.13 Linear and Non-linear Vibrating Systems 28
 1.14 Equivalent Springs and Dashpots 29
 Review Questions 33

2. UNDAMPED FREE VIBRATIONS 36–78
 2.1 Introduction 36
 2.2 Derivation of Differential Equation of Motion 36
 2.2.1 The Energy Method 36
 2.2.2 Method Based on Newton’s Second Law of Motion 38
 2.2.3 Rayleigh’s Method 39
 2.3 Solution of Differential Equation of Motion 40
 2.4 Systems Involving Angular Oscillations 42
 2.5 The Compound Pendulum 45
 Review Questions 73
3. DAMPED FREE VIBRATIONS 79–114
 3.1 Introduction 79
 3.2 Viscous Damping 79
 3.3 Free Vibrations with Viscous Damping 81
 3.4 Logarithmic Decrement 93
 3.5 Coulomb or Dry Friction Damping 102
 3.5.1 Frequency of Damped Vibrations and Rate of Decay 103
 3.5.2 Rate of Decay from Energy Considerations 106
 3.6 Comparison between Viscous and Coulomb Damping 107
 3.7 Solid or Structural Damping 109
 3.8 Slip or Interfacial Damping 110
 Review Questions 111

4. HARMONICALLY EXCITED VIBRATION (SYSTEMS WITH SINGLE DEGREE OF FREEDOM) 115–162
 4.1 Introduction 115
 4.2 Forced Harmonic Vibration 116
 4.3 Vector Representation of Forces in Forced Vibration 126
 4.4 Excitation Due to Unbalance 127
 4.4.1 Rotating Unbalance 127
 4.4.2 Reciprocating Unbalance 130
 4.5 Vibration Isolation 135
 4.6 Force Transmissibility 135
 4.6.1 Isolation Using Springs Alone 135
 4.6.2 Isolation Using Springs and Damper 138
 4.7 Force Transmissibility Aspect of Variable Speed Machine 141
 4.8 Motion Transmissibility (Systems Attached to Moving Supports) 147
 4.8.1 Absolute Motion of Mass 147
 4.8.2 Relative Motion of Mass (Seismic Instruments) 152
 Review Questions 159

5. SYSTEMS WITH TWO DEGREES OF FREEDOM 163–213
 5.1 Introduction 163
 5.2 Undamped Free Vibrations and the Principal Modes of Vibration 164
 5.3 Torsional Vibrations 178
 5.4 Forced Undamped Vibration with Harmonic Excitation (2 d.o.f.) 183
 5.5 Coordinate Coupling 184
 5.6 Dynamic Vibration Absorber 188
 5.7 Torsional Vibration Absorber 196
 5.8 Pendulum Type Dynamic Vibration Absorber 196
 5.9 Generalized Coordinates and Lagrange’s Equation 205
 Review Questions 210
Contents

6. **MULTI-DEGREE OF FREEDOM SYSTEMS** 214–259
 - 6.1 Introduction 214
 - 6.2 Equation of Motion 215
 - 6.3 The Matrix Method (Eigenvalues and Eigenvectors) 219
 - 6.4 Method of Influence Coefficients and Maxwell’s Reciprocal Theorem 222
 - 6.5 Orthogonality of the Principal Modes of Vibration 227
 - 6.6 Approximate Methods of Determining Fundamental Frequencies 228
 - 6.6.1 Dunkerley’s Lower Bound Approximation 229
 - 6.6.2 Rayleigh’s Method 233
 - 6.7 Stodola’s Method 237
 - 6.8 The Holzer Method 243
 - 6.9 Method of Matrix Iteration 251
 - Review Questions 255

7. **WHIRLING MOTION AND CRITICAL SPEEDS** 260–283
 - 7.1 Introduction 260
 - 7.2 Critical Speed of a Light Vertical Shaft with Single Disc (Without Damping) 261
 - 7.3 Critical Speed of a Vertical, Light-Flexible Shaft Carrying Single Rotor with Damping 267
 - 7.4 Critical Speeds of a Shaft Carrying Multiple Discs (Without Damping) 276
 - 7.5 Secondary Critical Speed 279
 - Review Questions 282

8. **CONTINUOUS SYSTEMS** 284–309
 - 8.1 Introduction 284
 - 8.2 Vibration of Strings (Transverse Wave Propagation on a String) 285
 - 8.3 Longitudinal Vibrations of Bars 287
 - 8.4 Torsional Vibrations of Circular Members 289
 - 8.5 Transverse Vibration of Beams 290
 - Review Questions 308

9. **SOUND LEVEL AND SUBJECTIVE RESPONSE TO SOUND** 310–342
 - 9.1 Introduction 310
 - 9.2 Subjective Response to Sound 311
 - 9.3 Frequency Dependent Human Response to Sound 312
 - 9.4 Sound-Pressure Dependent Human Response 313
 - 9.5 The Decibel Scale 314
 - 9.6 Relationship among Sound Power, Sound Intensity and Sound Pressure Level 316
 - 9.6.1 Relation between Sound Power Level and Sound Intensity Level 316
 - 9.6.2 Relation between Sound Intensity Level and Sound Pressure Level 317
The subject of vibration deals with the oscillatory motions of bodies and the forces associated with them. Vibratory motions in machines and structures frequently occur in engineering applications. In fact, many significant failures of machines and structures in the past are attributed to severe vibrations to which they were subjected. It is always possible to anticipate vibration problem at the design stage itself. A design engineer, therefore, needs to be thoroughly exposed to the basic principles of vibration. The subject is thus important not only to mechanical and civil engineers but also to aeronautical engineers. With the introduction of predictive and diagnostic type of maintenance strategies, especially useful in process industries, periodic measurements of vibration and noise in machines have become all the more important. In preparing the manuscript of this book, the author has relied heavily on his class notes and classroom experience in this subject, spread over almost 30 years. The author also had in his mind, needs of the B.E. and B.Tech. students of Indian universities and those preparing for competitive examinations. Chapters 1–7 are devoted to cover various aspects of engineering vibration.

Noise is an obvious outcome of vibrations in machines and structural components. Any improvement in quality of city life calls for implementation of hearing conservation programme in the community, by way of increasing public awareness and also through enforcement of noise level regulations. In very near future, the engineers and executives working on the shop floors of industries will be required to maintain noise-exposure levels for industrial workers within permissible limits. An effective noise-control strategy to achieve this requires one to take into account the noise-emission levels of machines at the time of their purchase. The subject matter in this textbook is tailored to meet all such basic requirements of the students and budding engineers in noise engineering and is covered in Chapters 8–11.

With increase of size and speed of modern machines, vibration problems in structures and machines have assumed greater importance in all the three engineering disciplines. In view of fast rate of industrialization and also keeping in mind the rate at which increase in automotive vehicular population is taking place in this country, the author foresees an urgent need of stricter noise regulations and their effective enforcement to protect environment. A