Transducers and Instrumentation

Second Edition

D.V.S. MURTY
Formerly Professor of Electrical Engineering
Indian Institute of Technology Kharagpur

PHI Learning Private Limited
New Delhi-110001
2012
To

The Students of Instrumentation Engineering
Contents

Preface xvii
Preface to the First Edition xix

1 **Measurement, Instrumentation and Calibration** 1–43

1.0 Introduction 1
1.1 Measurement 3
1.2 Instrument 6
1.3 Instrumentation 7
1.4 Classification of Transducers 9
1.5 Performance Characteristics 11
1.5.1 Static Characteristics 11
1.5.2 Dynamic Characteristics 20
1.6 Errors in Measurement 24
1.6.1 Gross Errors 25
1.6.2 Systematic Errors 25
1.6.3 Statistical Analysis of Random Errors 29
1.7 Calibration and Standards 34
1.7.1 Process of Calibration 34
1.7.2 Classification of Standards 38
1.7.3 Standards for Calibration 39

Exercises 41
Suggested Further Reading 43

2 **Signals and Their Representation** 44–71

2.0 Introduction 44
2.1 Laplace and Fourier Transforms 46
Contents

2.2 Standard Test Signals 49
2.3 Periodic Signals 51
 2.3.1 Complex Form Representation 53
 2.3.2 Line Spectra 54
2.4 Aperiodic Signals 56
2.5 Bandwidth 57
2.6 Modulated Signals 60
 2.6.1 Amplitude Modulation 61
 2.6.2 Angle Modulation 63
 2.6.3 Frequency Modulation 64
 2.6.4 Phase Modulation 66
2.7 Sampled Data 67
2.8 Pulse Modulation 68
2.9 Pulse Code Modulation 69
Exercises 70
Suggested Further Reading 71

3 Electrical Measuring Systems 72–132

3.0 Introduction 72
3.1 Measurement of Current 72
 3.1.1 Permanent Magnet Moving Coil Instruments 73
 3.1.2 Other Current-Measuring Systems 78
3.2 Measurement of Voltage 78
 3.2.1 dc Potentiometer Network 79
 3.2.2 Electronic Voltmeters 81
3.3 Measurement of Resistance 87
 3.3.1 Indicating Ohmmeters 87
 3.3.2 Wheatstone-Bridge Networks 89
3.4 Measurement of Impedance 95
3.5 Electronic Amplifiers 102
 3.5.1 Difference or Balanced Amplifiers 102
 3.5.2 Electrometer Amplifiers 103
 3.5.3 Feedback Amplifiers 105
 3.5.4 Operational Amplifiers 106
 3.5.5 Isolation Amplifiers 116
 3.5.6 Charge Amplifiers 118
 3.5.7 Power Amplifiers 121
3.6 Measurement of Phase Angle 123
 3.6.1 Phase-Sensitive Detectors 125
3.7 Frequency Measurement 127
3.8 Time-Interval Measurements 129
Exercises 130
Suggested Further Reading 131
4 Dynamics of Instrument Systems 133–182

4.0 Introduction 133
4.1 Generalized Performance of Systems 134
 4.1.1 Zero-order Systems 135
 4.1.2 First-order Systems 136
 4.1.3 Second-order Systems 138
 4.1.4 Higher Order Systems 146
4.2 Electrical Networks 146
4.3 Mechanical Systems 149
4.4 Electromechanical Systems 154
4.5 Thermal Systems 158
4.6 Fluidic Systems 159
 4.6.1 Liquid Manometer Systems 166
 4.6.2 Pneumatic Systems 167
 4.6.3 A Flapper Nozzle System 169
4.7 Filtering and Dynamic Compensation 173
 4.7.1 RC Networks as Filters 174
 4.7.2 Dynamic Compensation 178

Exercises 180
Suggested Further Reading 182

5 Mechanical Transducers 183–254

5.0 Introduction 183
5.1 Basics of Temperature Measurement 184
 5.1.1 Absolute Thermodynamic or Kelvin Scale 185
 5.1.2 Bimetallic Element 187
 5.1.3 Fluid Expansion Systems 189
5.2 Basics of Pressure Measurement 191
 5.2.1 Manometers 191
 5.2.2 Ring-balance Manometer 194
 5.2.3 Bell-type Manometer 196
 5.2.4 Thin Plate Diaphragms 196
 5.2.5 Membranes 198
 5.2.6 Corrugated Diaphragms and Capsules 198
 5.2.7 Bellows Element 199
 5.2.8 Bourdon Tube Elements 201
5.3 Basics of Force Measurement 203
 5.3.1 Helical Spiral Springs 204
 5.3.2 Cantilever Beams 204
 5.3.3 Beams Held at Both Ends 205
 5.3.4 Diaphragm Elements 206
 5.3.5 Column-type Load Cells 207
 5.3.6 Proving Ring-type Load Cell 207
5.4 Basics of Torque Measurement 209
 5.4.1 Torsion Bar 210
 5.4.2 Flat Spiral Spring 212
5.5 Basics of Density Measurement 213
 5.5.1 Hydrometer System 213
 5.5.2 Air Bubbler System 214
 5.5.3 U-tube Weighing System 215
5.6 Basics of Liquid-Level Measurement 216
 5.6.1 Float Element 216
 5.6.2 Level-to-Pressure Converters 217
 5.6.3 Level-to-Force Converter 219
5.7 Basics of Viscosity Measurement 219
 5.7.1 Viscosity-to-Pressure Converter 220
 5.7.2 Viscosity-to-Torque Converter 221
 5.7.3 Viscosity-to-Displacement Converter 222
5.8 Basics of Flow Measurement 223
 5.8.1 Pitot-static Tube 227
 5.8.2 Flow-Obstruction Elements 229
 5.8.3 Centrifugal Force Element 232
 5.8.4 Static Vane Elements 233
 5.8.5 Rotating-vane Systems 234
 5.8.6 Rotameter-float System 236
5.9 Displacement-to-Pressure Transducer 238
5.10 Seismic Displacement Transducer 240
5.11 Basics of a Gyroscope 245
 5.11.1 The Rate Gyro 249
 5.11.2 Integrating Gyro 250
Exercises 251
Suggested Further Reading 253

6 Passive Electrical Transducers 255–368
6.0 Introduction 255
6.1 Resistive Transducers 255
 6.1.1 Resistance Thermometers 257
 6.1.2 Hot-wire Resistance Transducers 270
 6.1.3 Resistive Displacement Transducers 284
 6.1.4 Resistive Strain Transducer 288
 6.1.5 Resistive Pressure Transducer 312
 6.1.6 Resistive Moisture Transducers 315
 6.1.7 Resistive Magnetic-flux Transducers 321
 6.1.8 Resistive Optical Radiation Transducers 323
6.2 Inductive Transducers 324
 6.2.1 Inductive Thickness Transducers 329
 6.2.2 Inductive Displacement Transducers 330
6.2.3 Movable Core-Type Inductive Transducers 342
6.2.4 Eddy Current Type Inductive Transducer 346
6.3 Capacitive Transducers 347
6.3.1 Capacitive Thickness Transducer 349
6.3.2 Capacitive Displacement Transducers 350
6.3.3 Capacitive Moisture Transducer 363

Exercises 365
Suggested Further Reading 368

7 Active Electrical Transducers 369–458

7.0 Introduction 369
7.1 Thermoelectric Transducers 369
7.1.1 Thermoelectric Phenomena 370
7.1.2 Common Thermocouple Systems 373
7.2 Piezoelectric Transducers 378
7.2.1 Piezoelectric Phenomenon 378
7.2.2 Piezoelectric Materials 382
7.2.3 Piezoelectric Force Transducer 385
7.2.4 Piezoelectric Strain Transducer 388
7.2.5 Piezoelectric Torque Transducer 388
7.2.6 Piezoelectric Pressure Transducers 388
7.2.7 Piezoelectric Acceleration Transducer 391
7.3 Magnetostrictive Transducers 392
7.3.1 Magnetostriction Phenomenon 393
7.3.2 Magnetostrictive Force Transducer 394
7.3.3 Magnetostrictive Acceleration Transducer 395
7.3.4 Magnetostrictive Torsion Transducer 396
7.4 Hall-Effect Transducers 396
7.4.1 Applications of Hall Transducers 398
7.5 Electromechanical Transducers 399
7.5.1 Tachometers 399
7.5.2 Variable-Reluctance Tachometers 401
7.5.3 Electrodynamical Vibration Transducers 403
7.5.4 Electrodynamical Pressure Transducer 405
7.5.5 Electromagnetic Flowmeter 406
7.6 Photoelectric Transducers 407
7.6.1 Photoelectric Phenomenon 409
7.6.2 Photoconductive Transducers 410
7.6.3 Photovoltaic Transducers 411
7.6.4 Photoemissive Transducers 412
7.7 Ionization Transducers 416
7.7.1 Ionization Vacuum Gauges 417
7.7.2 Ionization Displacement Transducer 419