Second Edition (Revised)

MATRIX AND LINEAR ALGEBRA

Aided with MATLAB

Kanti Bhushan Datta
Matrix and Linear Algebra
Aided with MATLAB
Second Edition

KANTI BHUSHAN DATTA
Former Professor
Department of Electrical Engineering
Indian Institute of Technology Kharagpur

PHI Learning Private Limited
New Delhi-110001
2011
To my daughter
Somantika

to provide inspiration for strengthening her
skill in mathematics
Contents

Preface xi
Preface to the First Edition xiii

1 Matrix Algebra 1–26
 1.1 Definition of a Matrix 6
 1.2 Operations on Matrices 7
 1.2.1 Properties of Matrix Addition and Scalar Multiplication 8
 1.2.2 Properties of Matrix Multiplication 10
 1.2.3 Properties of Matrix Transposition 12
 1.3 Symmetric, Hermitian and Triangular Matrices 13
 1.4 Powers and Trace of a Square Matrix 15
 1.5 Differentiation and Integration of a Matrix 16
 1.6 Field and Matrix Over an Arbitrary Field 17
 1.7 Matrix Operations with MATLAB 19
Problems 22

2 Determinants 27–54
 2.1 Permutation and Inversion 27
 2.2 Determinant, Cofactor and Minor 28
 2.3 Properties of Determinants 33
 2.4 Evaluation of Determinants 37
Problems 47
Contents

3 Inverse of a Matrix 55–73
3.1 Singular Matrix: Adjoint and Inverse of a Matrix 55
3.2 Important Properties of Matrix Inversion 58
3.3 Inverse of a Matrix by Partitioning 59
Problems 67

4 Rank and Equivalence 74–92
4.1 Submatrix: Rank 74
4.2 Elementary Transformations 75
4.3 Equivalence and Normal Form 79
4.4 Inverse by Step-by-Step Reduction of \([A; I]\) 82
4.5 Inverse from Elementary Matrices 82
4.6 Row-Equivalent and Column-Equivalent Canonical Form 84
4.7 Properties of Rank 86
4.8 Right Inverse and Left Inverse of a Matrix 87
Problems 90

5 Vector Space 93–162
5.1 Vector Space 93
5.2 Linear Dependence, Basis and Dimension 97
5.3 Vector Subspace 104
5.3.1 Vector Space as a Direct Sum of Subspaces 106
5.4 Inner Product Spaces 108
5.5 Orthonormal Basis and Gram-Schmidt Process of Orthogonalization 116
5.6 Linear Simultaneous Equations: Cramer Rule 123
5.7 Rank and Nullity: Sylvester Inequality 134
5.8 Computation of Linear Dependence and Independence of Vectors 139
5.8.1 Gaussian Elimination Method 145
5.8.2 RC (or RREF) Method (Based on Row-equivalent Canonical Form) 148
5.9 MATLAB Methods in Vector Spaces 153
Problems 157

6 Linear Transformation and Matrices 163–225
6.1 Linear Transformation 163
6.2 Properties of Linear Transformations 169
6.3 Matrix of a Linear Transformation 180
6.3.1 Matrix of an Identity and a Zero Transformation 184
6.3.2 Matrix of the Sum of Two Linear Transformations and a Scalar Multiple of a Linear Transformation 186
6.3.3 Matrix of a Composite Transformation 186
6.3.4 Matrix of an Inverse Transformation 187
6.4 Change of Basis 188
6.5 Orthogonal and Unitary Transformations 194
6.6 Linear Functionals: Dual Space: Bidual Space 198
 6.6.1 Linear Transformation and Transpose of a Matrix: Dual Space 202
 6.6.2 Bidual Space 206
 6.6.3 Adjoint of a Linear Transformation 208
Problems 216

7 Eigenvalues, Eigenvectors and the Characteristic Equation 226–307
7.1 Eigenvalues, Eigenvectors and the Characteristic Equation of a Matrix 226
 7.1.1 Eigenvalues and Eigenvectors of a Linear Transformation 231
7.2 Properties of Eigenvectors Associated with Distinct Eigenvalues 233
 7.2.1 Left Eigenvector and Right Eigenvector 237
 7.2.2 Diagonalizable Linear Transformation 240
7.3 Matrix Polynomial and Lambda Matrix 241
 7.3.1 Matrix Polynomials 241
 7.3.2 Lambda Matrix or Polynomial Matrix 242
 7.3.3 Composition of Lambda Matrices 243
 7.3.4 Operator Polynomial 251
7.4 Characteristic Polynomial, Annihilating Polynomial and Minimum Polynomial 252
 7.4.1 Cayley-Hamilton Theorem and Minimum Polynomial for a Linear Transformation 259
7.5 Computation of Characteristic Polynomial and Adjoint of (λI − A) 260
 7.5.1 Eigenvalues and Eigenvectors of Matrix Polynomials 265
 7.5.2 Newton Formulae, Leverrier Method, and Faddeev Algorithm 267
7.6 Multiplicities of Eigenvalues 271
7.7 Eigenvalue Problem for Hermitian Matrices 274
7.8 Congruent Matrices 291
7.9 MATLAB Aids 296
Problems 297

8 Bilinear, Quadratic and Hermitian Forms 308–363
8.1 Bilinear Forms 308
8.2 Quadratic Forms 311
8.3 Reduction of Quadratic Forms 314
 8.3.1 Orthogonal Transformation 314
 8.3.2 Lagrange Reduction 315
8.4 Sylvester Law of Inertia 323
8.5 Hermitian Forms 326
viii Contents

8.6 Positive Definite Quadratic and Hermitian Forms: Positive Definite Matrices 331
8.7 Generalized Eigenvalue Problem 340
8.8 Bases for Matrix Representation of a Bilinear Function 346
Problems 357

9 Vector Norms and Matrix Norms 364–402
9.1 Vector Norms 364
9.2 Matrix Norms 369
 9.2.1 Compatible Matrix Norms 372
 9.2.2 Continuity of Matrix and Vector Norms 373
9.3 Induced Matrix Norms 374
 9.3.1 Singularity Index 380
9.4 Equivalent Norms 381
9.5 Matrix Sequence and Matrix Series 383
9.6 Generalized Inverse of a Matrix 388
 9.6.1 Least Squares Solution of $Ax = b$ 395
9.7 Solution of $Ax = b$ with MATLAB 396
Problems 398

10 Normal Forms 403–451
10.1 Elementary Operations on λ-Matrices 403
10.2 Left Equivalence: Column Hermite Forms 406
10.3 Right Equivalence: Row Hermite Forms 413
10.4 Equivalence of Lambda Matrices 415
10.5 Invariant Polynomials and Smith Canonical Forms 421
10.6 Similarity and Equivalence—First and Second Natural Normal Forms: Jordan Canonical Forms 424
Problems 446

11 Linear Transformations and Normal Forms 452–507
11.1 Direct Sum of Subspaces 452
11.2 Invariant Subspaces 460
11.3 Root Subspaces: Quasi-Diagonal Form 463
11.4 Decomposition of Root-Subspaces: Jordan Normal Form 470
11.5 Jordan Forms with MATLAB 502
Problems 503

12 Function of a Matrix 508–554
12.1 Definition and Evaluation of the Function of a Matrix 509
12.2 Spectral Resolution $f(A)$ when A is Arbitrary 516
 12.2.1 Computation of $f(A)$ Using Vandermonde Matrix 521
12.3 Square Root of a Matrix A, $\sin A$, $\cos A$, $\ln A$ 525
12.4 An Elementary Proof of Jordan Normal Form 530
12.5 Integral Representation of \(f(A) \) 534
12.6 Further Discussion on Matrix Sequence and Matrix Series 538
12.7 Solution of Vector-Matrix Differential Equations 543
12.8 Solution of Vector-Matrix Difference Equations 549
12.9 MATLAB Computation of Matrix Function 551

Problems 551

13 Numerical Linear Algebra 555–606

13.1 Basic Concepts of Finite Arithmetic 555
13.2 Conditioning and Numerical Stability 557
 13.2.1 Inverse of a Perturbed Matrix: Condition Number 557
 13.2.2 Perturbed Linear Equations: Condition Number 559
 13.2.3 Eigenvectors and Eigenvectors of a Square Matrix 560
13.3 Orthogonal Transformations 564
 13.3.1 Householder Transformation 564
 13.3.2 Plane Rotation 571
 13.3.3 Least Squares Solution of \(Ax = b \) 575
13.4 Numerical Evaluation of Eigenvalues and Eigenvectors 576
 13.4.1 Gerschgorin Method 576
 13.4.2 The Power Method 578
 13.4.3 Method of Deflation 580
 13.4.4 Inverse Iteration 581
 13.4.5 Jacobi and Givens Method 583
 13.4.6 LR-factorization and LR-algorithm 586
 13.4.7 QR-algorithm 589
 13.4.8 Implicitly Shifted QR-algorithm 594
 13.4.9 Double-shifted QR-algorithm 597
13.5 Determination of Eigenvectors Via QR-algorithm 599
13.6 Computation with MATLAB 600

Problems 603

References 607–612

List of Corollaries, Definitions, Examples, Lemmas, Remarks, Theorems 613–616

Answers 617–638

Index 639–651
This book survived a seventeen-year acid test of the students, professors and other professionals, for which the author is very much grateful. A revision is thought necessary, being propelled by the motivation of introducing MATLAB for the study of numerical aspect of matrix theory. This may urge the students to solve the different chapter-end problems with a computer, without much computational chore with three p’s (pen-paper-pencil). The semester-oriented engineering and science educational curriculum keeps on rolling with such great strides that the average students need ready-to-help books to learn the technicalities of solving problems of diverse nature to tide over the difficult time of an examination. Worked-out examples are, therefore, provided in great abundance, besides a few diagrams illustrating the concepts. A large number of chapter-end problems are incorporated, and answers to all the problems are provided to help the student in self-study. So, the learning of matrix and linear algebra, aided with MATLAB, may turn out to be a pleasant trip to a wonderland with twin lovers.

As, course material, this book can be used in many ways. For an elementary course, one can choose Chapters 1–3, Sections 4.1–4.4; 5.1–5.3, 5.6; 7.1, 7.2, 7.4–7.6, skipping the related linear transformation portions. Last but not least, Chapter 13, the most important part from the application point of view, outlines numerical linear algebra. These topics may form a forty-hour lecture course of one semester supported by homework and tutorials. The remaining chapters and sections may form a second semester advanced course on matrix and linear algebra for those students who are pursuing M.Sc. in Mathematics or Ph.D. programmes.

The present book is a revised edition of the book MATRIX AND LINEAR ALGEBRA and is renamed as MATRIX AND LINEAR ALGEBRA: AIDED WITH MATLAB. A Solutions Manual for all the chapter-end problems is now available for the instructors.

The introduction of MATLAB and how to use it for matrix computation are the major and significant additions to the first edition. Moreover, new sections on square-root of a matrix as