Bond Graph in Modeling, Simulation and Fault Identification

Amalendu Mukherjee
Ranjit Karmakar
Arun Kumar Samantaray

I.K. International
Bond Graph in Modeling, Simulation and Fault Identification

Amalendu Mukherjee
Ranjit Karmakar
Arun Kumar Samantaray
Department of Mechanical Engineering
IIT Kharagpur, Kharagpur

New Delhi • Mumbai • Bangalore
Bond Graph in Modeling, Simulation and Fault Identification
To our wives

Late Nita Mukherjee

Sorashi Karmakar

and

Trupti Samantaray
Preface

Bond graphs have become a part of undergraduate and postgraduate curricula at I.I.T. Kharagpur, since 1985. Bond graphs have fostered innovation and creativity in scholars, undergraduate and postgraduate students. This is manifested through a large number of doctoral dissertations and undergraduate and postgraduate projects addressing to both, theoretical aspects of bond graph theory and its wide and significant applications to the problems of industrial importance. Many industries and organization in India have included bond graphs in their research, development and design activities. Several universities and academic institutes have included bond graphs in their curricula. In the United States, Europe and Australia bond graph has very firmly developed its roots since mid seventies and now its branches are developing, bringing more and more industries and academics in its folds. The number of participants in International Conferences on Bond graph Modeling and Simulation is increasing every year.

Through sustain research in this field, in the recent years range of applications bond graphs has enhanced. These new applications are not only for system modeling but also for direct control theoretical analysis and synthesis, fault detection and isolation. A chapter in this book is devoted these aspects of bond graph modeling.

This book is an outcome of our teaching system-modeling, dynamics and control through bond graphs for the last fifteen years and its somewhat narrative style is due to a video course (of nearly 38 hours) created by Centre of Education Technology, I.I.T. Kharagpur, in which one of us has been the lecturer. The flavor of the narrative style is retained in this book as we realized its efficacy by observing the rapidity and depth with which the students grasped the subject.

This book has been organized into sixteen chapters. In Chapter – 1 we present the idea of Paynter and create the first impression on bond graphs followed by discussion on power variables, bond graph elements, constitutive laws and power direction. The notion of causality and laws of information exchange has been expounded in Chapter – 2 along with causality of bond graph elements, assignment of causality and a discussion on causal loop. In Chapter – 3 we present selection of system variables and a systematic procedure for the generation of system equations of state from a power directed and causalled bond graph model. Methods of creating system bond graph models and their reduction have been presented in Chapter – 4 with examples in mechanical and electrical domains. This chapter also contains

1 Video course, “Modeling and Simulation of Dynamic Systems” by Amalendu Mukherjee. Contact Dr. Bani Bhattacharya, Centre of Education Technology, Indian Institute of Technology, Kharagpur - 721 302, India. e-mail: banib@hijli.iitkgp.ernet.in
equivalences of several transformer-gyrator-element combinations and creation of bond graph models for electrical transformer, induction and DC motors and their reduction to equivalent circuits as used by electrical engineers. In Chapter – 5 we present the principle of material objectivity and modeling of nonholonomic systems and systems in noninertial coordinates and with gyroscopic motion.

We open Chapter – 6 with a discussion on nonpotential systems and then present modeling of systems with regenerative nonpotential fields. We end this chapter with an example of modeling and simulation of a rotor with internal damping coupled to a two-phase induction motor. Chapter – 7 deals with distributed parameter systems. Modeling of Euler-Bernoulli beam, Rayleigh beam and Timoshenko beam with finite approximation is followed by creation of modal bond graph for such systems. In Chapter – 8 we present modeling of mechanisms and robotic manipulators and a bond graph based approach for computation of driving efforts. Chapter – 9 gives an overview of multi bond graph representation of systems with morphological similarities in subsystem clusters. Chapter – 10 start with the axioms of thermodynamics and establish the gas C - field with mechanical, thermal and material ports. Following this we present pseudo bond graph model for heat transfer and derived bond graph, a rational path to pseudo bond graph.

In Chapter – 11 we establish the power variables and junction structure in hydraulic circuits followed by modeling of a hydraulic servomotor. Chapter – 12 deals with the conversion of bond graph to signal flow graph and modeling of feedback control systems. Chapter – 13 brings out the power of bond graph modeling in developing control strategies from physical paradigms. In Chapter – 14 we present bond graph modeling of some basic electronic devices and circuits. Chapter – 15 is mainly devoted to applications of bond graph modeling to fault detection and isolation. This chapter also includes some significant issue of control system analysis and synthesis through bond graphs. Chapter – 16 is in three parts. Part – A presents modeling and simulation of a compressor-reservoir-muffler system. Part – B deals with modeling of a hydraulic orbit motor and in Part – C we present an application of bond graphs to non-energetic system like market economics.

The problems at the end of the chapters are divided into two groups viz. problems to be solved by students for usual practice and project type problems. Project type problems are relatively more advanced and may be used for term or short projects by students. A solution manual for the problems is also created and will be available to instructors on demand from the HighTech Consultants. Please contact to the following e-mail address or phone number: contact@htcinfo.com or +91 - 9434021009

The modified appendix describes the latest software “SYMBOLS Shakti”. A CD containing a concise version of the software is provided with this book.
This book though written by three authors is an urge of an academic school, to share its joy of unified understanding of system dynamics and creativity.

A family of software created at I.I.T., Kharagpur has played very significant role in consolidating basic ideas and expanding them through large number of applications. The software SYMBOLS\(^2\) has played the role of binding and motivating power for the school of bondgraphers at Kharagpur. Dr. Samantaray has also generated new ideas and practices which are very typical of this school. We also acknowledge the contribution of Mr. Rahul Lahiri, who as an undergraduate, initiated creation of COSMO, the predecessor of SYMBOLS, about fifteen years ago. We acknowledge Dr. C. S. Kumar for his contributions to Chapter – 13 of this book. This chapter is based on his doctoral dissertation.

We would like to thank Dr. Ranjan Bhattacharyya, Mr. Surjya Kanta Pal and Mr. Kingshook Bhattacharyya for very lively discussions during preparation of this book.

We gratefully acknowledge Prof. A. S. R. Murty who supported us whenever the weather turned out so bad that our canopy could have blown off and foundation swept away. His sense of humour, his wisdom and his faith in us revitalized us whenever our limbs got numb in front of frustrating indifference and due to fatigue. We are extremely grateful to Prof. M. A. Faruqui who always believed that we were devoted to a meaningful pursuit. He campaigned for our activities and provided us with all moral and material support, even going out of the way.

We express our regards and gratitude to Prof. J. U. Thoma, who, in spite of considerable discomfort, keeps visiting us, bonding us strongly with international fraternity of bondgraphers.

We thank Mr. M. R. Joshi, Director, R&D Engineers, and his colleagues who appreciated the value of this new modeling technique and helped us in conducting a national workshop on Bond graph technique, first of its kind in India. This workshop created bonds between engineers and scientists from all over India.

We acknowledge Continuing Education Programme, I.I.T. Kharagpur for partially supporting preparation of the manuscript.

We thank Mr. H. Das for sorting out software problems during preparation of the manuscript with a smile. We will ever remain grateful to our students Kumar, Arun,

\(^2\) See the Appendix for details on the software SYMBOLS.
Nantu, Suriya, Mohan, Kabir, Kingshook, Dilip, Rahul, Biswajit, late A. J. Sanyal and a host of others who helped us enrich our experience with bond graphs.

Finally our heartful thanks to Mr. Su vendu Banerjee who has single handedly prepared the entire manuscript, which contains more than 1000 figures and created a camera ready form of it. Mr. Banerjee ungrudgingly incorporated umpteen modifications we made and accommodated our whims and impulses and fitted them too well to give them forms of well contemplated ideas.

Kharagpur
December, 2005
Kharagpur
December, 2005

Ode to the Bond Graphers

In nineteen fifty nine
Henry, the Paynter drew a line
Until that point every thing was fine
Ergs and bits then started plying
Amps, Volts, Magnet, Pressure, Price, Market
Heat, Entropy ’n Motion, with great commotion
Cooked in a potion and went unifying
No one ever since drew the final line.

By
A.M

A solution manual for the problems given in this book is also created and will be available to the instructors on demand from HighTech Consultants. A concise set of lectures on bond graph technique in video CD format (14 CDs) is also available. Please contact to the following e-mail address or phone number: contact@htcinfo.com or +91 – 9434021009.
Contents

Dedication .. v

Preface .. vii

Notations .. xix

1. Introduction ... 1
 1.1 Introduction .. 1
 1.2 An invariant nature of power exchange .. 2
 1.3 Bond graphs - a first impression ... 3
 1.4 Power variables of bond graph ... 4
 1.5 Bond graphs for simple electrical circuits ... 7
 1.6 Representation of junction elements ... 11
 1.7 Reference power directions on the bonds ... 12
 1.8 Bond graph standard elements .. 16
 1.8.1 Basic elements of Bond graphs ... 16
 1.8.2 Constitutive laws of single port bond graph elements 19
 1.8.3 Constitutive laws of basic 2-port elements .. 23
 1.8.4 Constitutive laws of the 3-port junction elements 26
 1.8.5 Mechanical 1 and 0 junctions ... 28
 1.9 Power direction and physical system coordinates ... 29

2. Notion of Causality ... 33
 2.1 The notion of causality ... 33
 2.1.1 Causation in physical system modeling ... 35
 2.1.2 Information exchange and its laws ... 35
 2.2 Causality of sources ... 36
 2.3 Causality of I and C elements ... 38
 2.4 Causality of R element .. 40
 2.5 Causality of junction elements ... 41
 2.6 Causality of two-port elements ... 44
 2.7 Differential causality .. 45
 2.8 Quintessence .. 48
 2.9 Algorithm for assigning causality ... 51
 2.10 What is wrong with a causal loop ... 53
 2.11 Examples on assignment of causality .. 54

3. Creation of System Equations ... 59
 3.1 Selection of system states .. 59
 3.2 Generation of system equations .. 59
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6</td>
<td>Another look at the objectivity of compliant fields</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>169</td>
</tr>
<tr>
<td>6.</td>
<td>Systems with Non-potential Fields</td>
<td>175</td>
</tr>
<tr>
<td>6.1</td>
<td>Nonpotential systems</td>
<td>175</td>
</tr>
<tr>
<td>6.2</td>
<td>Nonpotential fields</td>
<td>179</td>
</tr>
<tr>
<td>6.3</td>
<td>Multidimensional generalization of nonpotential fields</td>
<td>182</td>
</tr>
<tr>
<td>6.4</td>
<td>Bond graph models of nonpotential fields</td>
<td>183</td>
</tr>
<tr>
<td>6.5</td>
<td>Alternative representation of nonpotential fields</td>
<td>186</td>
</tr>
<tr>
<td>6.6</td>
<td>An unorthodox extension of C-field</td>
<td>186</td>
</tr>
<tr>
<td>6.7</td>
<td>Rotor on hydrodynamic bearings</td>
<td>188</td>
</tr>
<tr>
<td>6.8</td>
<td>Incorporating drive dynamics in rotors with regenerative fields</td>
<td>191</td>
</tr>
<tr>
<td>7.</td>
<td>Structural Members</td>
<td>199</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>199</td>
</tr>
<tr>
<td>7.2</td>
<td>Euler-Bernoulli beam model</td>
<td>199</td>
</tr>
<tr>
<td></td>
<td>7.2.1 Implementation of boundary conditions</td>
<td>201</td>
</tr>
<tr>
<td>7.3</td>
<td>Rayleigh beam model</td>
<td>203</td>
</tr>
<tr>
<td>7.4</td>
<td>Modeling of a beam column</td>
<td>207</td>
</tr>
<tr>
<td>7.5</td>
<td>Timoshenko beam model</td>
<td>208</td>
</tr>
<tr>
<td>7.6</td>
<td>Consistent inertia field</td>
<td>215</td>
</tr>
<tr>
<td>7.7</td>
<td>Modal bond graph for continuous systems</td>
<td>217</td>
</tr>
<tr>
<td>7.8</td>
<td>Transverse vibration of a uniform beam under transverse loads and moments</td>
<td>219</td>
</tr>
<tr>
<td>7.9</td>
<td>A note of structural modeling</td>
<td>227</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>227</td>
</tr>
<tr>
<td>8.</td>
<td>Modeling of Multibody Systems</td>
<td>231</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>231</td>
</tr>
<tr>
<td>8.2</td>
<td>Modeling of mechanisms</td>
<td>231</td>
</tr>
<tr>
<td></td>
<td>8.2.1 Slider-crank mechanism</td>
<td>231</td>
</tr>
<tr>
<td></td>
<td>8.2.2 Four bar mechanism</td>
<td>233</td>
</tr>
<tr>
<td></td>
<td>8.2.3 How to obtain the moduli of the transformers? (use of LINKPAC)</td>
<td>235</td>
</tr>
<tr>
<td>8.3</td>
<td>Modeling of mechanical handling systems</td>
<td>236</td>
</tr>
<tr>
<td>8.4</td>
<td>Modeling and computation of driving efforts for online control</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>8.4.1 Notation</td>
<td>242</td>
</tr>
<tr>
<td></td>
<td>8.4.2 Modeling of robot</td>
<td>243</td>
</tr>
<tr>
<td></td>
<td>8.4.3 Determination of transformer moduli for 5 d.o.f. robot</td>
<td>246</td>
</tr>
<tr>
<td></td>
<td>8.4.4 Derivation of effort equation</td>
<td>251</td>
</tr>
<tr>
<td>9.</td>
<td>Multi bond graphs</td>
<td>259</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>259</td>
</tr>
</tbody>
</table>
9.2 The various multi bond graph elements..............................259
 9.2.1 The single port elements..259
 9.2.2 The junction array...260
 9.2.3 Direct sum of multi bonds......................................260
 9.2.4 The transformer and the gyrator.............................261
 9.2.5 Field elements..262
9.3 Spatial mass spring damper system.................................263
9.4 A semidefinite system...264
9.5 Enhanced semidefinite system......................................264
9.6 The beam problem..264
9.7 Beam with gyroscopic effect..265
10. Modeling of Thermal Systems...271
 10.1 Introduction..271
 10.2 The thermal C-field for a volume of gas....................273
 10.3 Thermodynamic relations for C-field for an ideal gas.....276
 10.4 Modeling the thermal interface................................278
 10.5 Modeling the material interface..............................280
 10.6 Interface through an orifice..................................281
 10.7 Interface through finite resistor.............................282
 10.8 Model of a toy hovercraft.....................................284
 10.9 Pseudo bond graph for heat transfer and concept of derived bond graph (DBG).........................285
 10.9.1 Pseudo bond graph for heat transfer......................285
 10.9.2 Derived bond graphs - a path to pseudo bond graphs...290
 10.9.3 Definitions..290
 10.9.4 Derived constitutive laws..................................291
 10.9.5 Back to the problem of heat transfer....................297
 10.9.6 Realization of windows.....................................304
 Problems..305
11. Hydraulic Systems..309
 11.1 Introduction..309
 11.2 Power variables for hydraulic circuits......................310
 11.3 Turning towards hydraulic circuits............................312
 11.4 Appending viscous resistance to this picture..............315
 11.5 Hydraulic compliances...320
 11.6 Effort and flow sources, hydraulic gyrator and transformer...323
 11.7 Bond graph model of a hydraulic servomotor................325
 Problems..329
12. Approaching Control Systems..333
 12.1 Introduction..333
12.2 Signal-Flow Graph from bond graph ..333
12.3 Application of bond graphs to control systems339
12.4 Position control of a mass on a spring-damper combination339
 12.4.1 Proportional control ...339
 12.4.2 Proportional-integral control ...341
 12.4.3 Proportional-integral-derivative control342
12.5 Velocity control of an electric motor driving a load346
12.6 Velocity control of moving cars connected by a spring350
 Problems ...353

13. Control Strategies in Physical Domains ...357
 13.1 Introduction ...357
 13.2 Physical equivalents ...357
 13.3 Control system design from physical standpoint as an inverse problem362
 13.4 Robust overwhelming control scheme363
 13.5 Impedance control ...370
 13.6 Physical system transpositioning in the bond graph space374
 13.7 Implication of asymmetric transformation379

14. Modeling of Electronic Circuits ...381
 14.1 Introduction ...381
 14.2 Operational amplifier circuits ...381
 14.3 Scaling circuit ...385
 14.4 The opamp integrator ...387
 14.5 Basic Wien-Bridge oscillator ..388
 14.6 The semiconductor diode ...391
 14.7 The oscillating Wien-Bridge oscillator394
 14.8 Transistor as nodic-multiport element396
 14.9 Equivalent circuits ...402
 14.10 A simple speed control system ...403
 14.11 Concluding remarks ...404
 Problems ..405

15. Fault Detection and Isolation ..409
 15.1 Introduction ...409
 15.2 Classification of FDI procedures ..409
 15.3 Structural Controllability and Observability410
 15.3.1 Structural rank ...411
 15.3.2 Structural controllability ..412
 15.3.3 Structural observability ..413
 15.3.4 Examples ...414
 15.3.5 Alternate route for structural properties417
 Problems ..418
15.3.6 Structural Analysis of hybrid systems..............................418
15.3.7 Full-order augmented controller and observer..............422
15.4 Fault Diagnosis using Bond Graphs....................................425
15.4.1 Importance of Model Order Reduction.........................426
15.5 Qualitative FDI using bond graphs.................................430
 15.5.1 Determination of Initial Fault Set
 (Single Fault Hypothesis)..431
 15.6 Qualitative Analysis Using Tree Graphs.........................436
15.7 Qualitative FDI using Temporal Causal Graphs..................441
 15.7.1 Hypothesis generation..442
 15.7.2 Hypothesis validation..444
15.8 Quantitative FDI..445
 15.8.1 Residuals from state-space models...........................448
 15.8.2 Observer based residuals......................................452
 15.8.2.1 Dedicated observers..453
 15.8.3 Symbolic ARR derivation.......................................454
 15.8.3.1 Fault signatures and
 structural independence......................................458
 15.8.3.2 Technological Specifications in FDI....................461
15.9 ARRs from bond graph models..462
 15.9.1 Methodology..464
 15.9.2 The sensor placement problem................................470
 15.9.3 The initial conditions problem...............................471
 15.9.4 Fault scenario simulation.....................................476
 15.9.5 Hierarchical modeling for FDI.................................478
 15.9.6 Matching problems in classical
 bond graph modeling..482
 15.9.7 A numerical example..484
 15.9.8 Fault tolerant control..488
 15.9.8.1 Bicausality notation....................................488
 15.9.8.2 Parameter estimation....................................489
 15.9.8.3 Control law synthesis....................................491
 15.9.8.4 Example..495
 15.9.8.5 Controllability indices..................................497
 15.9.9 Hidden constraints in bond graph models....................500
 15.9.10 FDI of distributed systems................................501
15.10 Conclusions..506

16. Examples of Modeling and Simulation.................................511

Part A: Thermopneumatic system...511
 16.1 Introduction..511
 16.2 Nomenclature..511
16.3 Bond graph model ... 512
16.4 Results of the primary model ... 514
16.5 Design of the muffler ... 516
16.6 Implementation of the muffler .. 518
16.7 Results ... 520

Part B : Power hydraulics ... 523
16.8 Introduction .. 523
16.9 The physical system ... 524
16.10 Bond graph model .. 524
16.11 Nomenclature .. 526
16.12 Transformer moduli ... 527
16.13 Numerical solution .. 527
16.14 Results of numerical solutions 528
16.15 Tractable estimation of average steady state behavior 529
16.16 Results of tractable solutions .. 532

Part C : Market economics ... 535
16.17 Introduction .. 535
16.18 Nomenclature .. 535
16.19 Bond graph elements and their representation in economic systems ... 536
16.20 Implementing bond graphs for economic systems 538
16.21 Description of models .. 539
16.22 Conclusions and scope ... 556

Appendix – SYMBOLS software overview ... 559
A.1 SYMBOLS Shakti ... 559
 A.1.1 Key features of SYMBOLS Shakti - Bondpad module 560
 A.1.2 Key features of SYMBOLS Shakti - Simulator module 560
 A.1.3 Key features of SYMBOLS Shakti - Controls module 561
 A.1.4 Areas of Application .. 561

A.2 Examples on Modeling using SYMBOLS Shakti 562
 A.2.1 Example 1: Dynamics of an automobile with road excitation ... 562
 A.2.2 Example 2: Four bar mechanism 573
 A.2.3 Example 3: Incorporation of Tabulated characteristics of System Parameters and sources 576
 A.2.4 Example 4: Creation of a block diagram model to simulate Van-der-pol’s oscillator 578
 A.2.5 Example 5: Mixed mode modeling 579
 A.2.6 Example 6: Colpitt’s Oscillator 581
A.2.7 Example 7: 3-Phase Induction Motor driving a Load………………...582
A.2.8 Example 8: Study on Thermal Damping………………………………583
A.2.9 Example 9: Modeling Structural Members…………………………….585
A.2.10 Example 10: Modeling Rotor Dynamics…………………………….587
A.2.11 Example 11: Control System Design…………………………………588
A.2.12 Example 12: Modeling and Simulation of Complex Systems……….595
A.2.13 Example 13: Modeling of a Rotating Shaft
 with Dissipative Coupling using Vector Bond Graphs…………….601
Bibliography………………………………………………………………………………..613
Index…………………………………………………………………………………………619
Notations

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>cross-sectional area</td>
</tr>
<tr>
<td>B</td>
<td>flux density</td>
</tr>
<tr>
<td>C</td>
<td>capacitance, compliance</td>
</tr>
<tr>
<td>E</td>
<td>energy, source of voltage</td>
</tr>
<tr>
<td>e</td>
<td>generalized effort</td>
</tr>
<tr>
<td>e_i</td>
<td>effort in i^{th} bond</td>
</tr>
<tr>
<td>F</td>
<td>force</td>
</tr>
<tr>
<td>f</td>
<td>generalized flow</td>
</tr>
<tr>
<td>f_i</td>
<td>flow in i^{th} bond</td>
</tr>
<tr>
<td>g</td>
<td>acceleration due to gravity</td>
</tr>
<tr>
<td>H</td>
<td>magnetic field intensity, moment of momentum</td>
</tr>
<tr>
<td>h</td>
<td>specific enthalpy</td>
</tr>
<tr>
<td>i</td>
<td>current</td>
</tr>
<tr>
<td>J</td>
<td>junction</td>
</tr>
<tr>
<td>J_i</td>
<td>i^{th} junction</td>
</tr>
<tr>
<td>K,k</td>
<td>stiffness</td>
</tr>
<tr>
<td>L</td>
<td>inductance</td>
</tr>
<tr>
<td>M,m</td>
<td>mass</td>
</tr>
<tr>
<td>m</td>
<td>mass flow rate</td>
</tr>
<tr>
<td>n</td>
<td>number of turns in a coil</td>
</tr>
<tr>
<td>P</td>
<td>power, pressure</td>
</tr>
<tr>
<td>p</td>
<td>momentum</td>
</tr>
<tr>
<td>Q</td>
<td>displacement, charge, total heat</td>
</tr>
<tr>
<td>Q</td>
<td>volume flow</td>
</tr>
<tr>
<td>R</td>
<td>resistance, resistor</td>
</tr>
<tr>
<td>S</td>
<td>entropy</td>
</tr>
<tr>
<td>s</td>
<td>specific entropy</td>
</tr>
<tr>
<td>T</td>
<td>temperature, kinetic energy</td>
</tr>
<tr>
<td>t</td>
<td>time</td>
</tr>
<tr>
<td>V</td>
<td>voltage</td>
</tr>
<tr>
<td>v</td>
<td>velocity, gas volume</td>
</tr>
<tr>
<td>X,x</td>
<td>coordinate direction</td>
</tr>
<tr>
<td>Y,y</td>
<td>coordinate direction</td>
</tr>
<tr>
<td>Z,z</td>
<td>coordinate direction</td>
</tr>
<tr>
<td>μ</td>
<td>chemical potential</td>
</tr>
<tr>
<td>ρ</td>
<td>density</td>
</tr>
<tr>
<td>r</td>
<td>torque</td>
</tr>
<tr>
<td>ϕ</td>
<td>magnetic flux</td>
</tr>
<tr>
<td>Ω,ω</td>
<td>angular velocity</td>
</tr>
<tr>
<td>$(·)$</td>
<td>super dot indicates time derivative</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

1.1 Introduction

Unlike his predecessors a few generations ago, modern man has to deal with variety, diversity and is compelled to be increasingly innovative. Need for growth has become essential for survival. Though it may sound paradoxical, it is true that the only way to deal with variety and diversity and to sustain the flow of innovation is to achieve conceptual unification. Again conceptual unification is often made to shrink to techniques of creating analogues of unmanageable or unfathomable domains into fields with established empirical structures. Such an art of analogue making is not unification. Unification, in fact, should imply uniformity of symbolism, dialectics and deductive processes dissolving the partitions of experience. The requirements of a unified approach to modeling, simulation and synthesis of physical systems could be stated as follows.

(a) It should have complete but concise lexicon with validity over a large variety of diverse domains.
(b) Allow the modeler to portray the interactions within each and exchange across these domains, using aforesaid lexicon.
(c) The portraits thus created should algorithmically lead to mathematical or logical models, which may be at a higher level of abstraction (i.e., without needing any intuitive trickery). These models may then be subjected to predictive or deductive processes.

In physical systems it is energy which plays the role of common currency of exchange between various domains and sustains the business of dynamics. It is surprising that Newton’s most prominent contemporary, Leibnitz [71] realized this fact. The statement of Leibnitz may appear rather strange to modernist; still the underlying idea would not be missed even at a casual glance. The statement is “The forces are of two kinds namely dead and live. The dead force depends on position and/or on configuration and the live force is proportional to square of velocity. The sum of these two forces in the universe remains constant”.

Immediate successors of Newton and Leibnitz (John Bernoulli, Daniel Bernoulli et al) found that many problems of mechanics are formulated and solved with greater ease by this idea of Leibnitz than by the methods of Newton. If we replace the term force by energy the statement of Leibnitz is law of conservation of energy in mechanical systems.
Bond Graph In Modeling, Simulation And Fault Identification

Publisher: IK International ISBN: 9788188237968

Author: Amalendu Mukherjee, Ranjit Karmakar & Arun Kumar Samantaray

Type the URL: http://www.kopykitab.com/product/5642

Get this eBook