A TEXT BOOK OF
SURVEYING AND
LEVELLING
Books on Civil Engineering

Advanced Theory of Structures & Matrix Method by Vazirani and Ratwani
Advanced Surveying by R. Agor
Analysis of Structures Vol. I & II by Vazirani and Ratwani
Building Construction by J. Jha and Sinha
Building Science and Planning by S.V. Deodhar
Civil Engineer's Practical Handbook by C.S.D. Singhal
Civil Engineering Drawing by B.P. Verma
Civil Engineering Estimating, Costing & Valuation by Vazirani & Chandola
Civil Engineering Materials by S.V. Deodhar
Concrete Structures by Vazirani and Ratwani
Concrete Technology by Vazirani and Chandola
Construction and Foundation Engineering by J. Jha and S.K. Sinha
Construction Engineering, Management of Projects by S.C. Sharma
Construction Equipment and Job Planning by S.V. Deodhar
Construction Equipment and its Management by S.C. Sharma
Construction Management and Accounts by Vazirani and Chandola
Construction Management of Industrial Projects by S.K. Bhattacharjee
Design Aids for Limit State Design of Reinforced Concrete Members by U.H. Varyani & Radhaji
Design of Concrete Bridges by Vazirani, Ratwani and Aswani
Design and Analysis of Steel Structures by V.N. Vazirani & M.M. Ratwani
Ecology and Environmental Studies by S.K. Garg
Elements of Matrix Analysis of Structures & Stability by V.K. Manicka Selvam
Elements of Civil Engineering by R. Agor
Fluid Mechanics including Hydraulic Machines by Dr. A.K. Jain
Fundamentals of PERT/CPM & Project Management by S.K. Bhattacharjee
Geology—Physical and Engineering by S.K. Garg
Handbook of Civil Engineering by Vazirani and Chandola
Highway Engineering (Including Expressways and Airport Engineering) by L.R. Kadyali & N.B. Lall
Hydrology and Water Resources Engineering by S.K. Garg
Irrigation Engineering & Hydraulic Structures by S.K. Garg
Limit State Design by H. Mehra & V.N. Vazirani
Maintenance Engineering (Repair and Maintenance of Civil Works and Structures) by Nayak
Problems on Soil Mechanics by B.P. Verma
Quantity Survey—Principles and Applications by P.K. Guha
Road Techniques by P.B. Shahni
Rock Mechanics by B.P. Verma
Sewage Disposal and Air Pollution (incl. Noise Pollution) by S.K. Garg
Soil Mechanics and Foundation Engineering by S.K. Garg
Soil Testing by S. Mithal & J.P. Shukla
Surveying and Levelling by R. Agor
Traffic Engineering and Transport Planning by L.R. Kadyali
Transportation Engineering Vol. I and II by Vazirani and Chandola
Water Supply, Waste Disposal and Environmental Pollution Engg. by A.K. Chaterjee
Water Supply Engineering by S.K. Garg
A TEXT BOOK OF SURVEYING AND LEVELLING

[For Degree, Diploma Students; Practicing Engineers and Surveyors]

By
R. AGOR
[Formerly Officer Survey of India]

Formerly,
Lecturer in Civil Engineering
Technical Education
Delhi.

Khanna Publishers
4575/15, Onkar House, Opp. Happy School,
Darya Ganj, New Delhi-110002
Phones : 23243042, 27224179; Fax : 23243043
Email : khannapublishers@yahoo.in
Web site : www.khannapublishers.in
PREFACE TO THE ELEVENTH EDITION

This edition of the treatise is thoroughly revised, edited and recomposed. Latest questions of various competitive examinations and other universities have been added to respective chapters. Besides this new chapters on Remote Sensing System and Geographical Information System have also been added at the end, to meet the requirements of students. Besides, this many Objective Type and Multi Choice Questions (M.C.Q.) have been added throughout the text.

It is hoped that the book will be further useful to B.Sc. Engg., Degree, Diploma students of various Indian Universities and Board of Technical Education as well as it will serve as a reference for field engineers and surveyors.

The author is thankful to the readers who had sent their valuable suggestions/comments for the improvement of this edition.

The author shall be grateful if any shortcomings in the text or contents are brought to his notice. Any suggestions/criticism for the improvement of the edition will be gratefully acknowledged.

R. AGOR
4/35, Sector 5, Rajender Nagar,
T.H.A. Sahibabad (Gzb).
The author has made an attempt to write this textbook after twenty-five years experience in the field of ‘Surveying and Teaching’. This book is primarily written for the students of A.M.I.E. (India), Degree and Diploma classes, but it will also be useful as a reference book for practicing engineers and surveyors.

While writing this book, the requirements of all the students regarding the latest trend of examinations, have been kept in view. The subject matter has been divided into sixteen chapters which are systematically arranged and discussed in detail with elaborate use of illustrations. Important questions from examination papers of A.M.I.E. (India), Universities and State Technical Boards, are given as solved examples in a logical sequence. At the end of each chapter, large number of objective type questions, essay type questions and numerical problems, have been added for the students to solve them independently and then to compare their results with those given in the book.

An attempt has been made to explain the method of contouring with an Indian tangent clinometer and the method of tacheometric planetabling and a solution of three points problem by making tacheometric observations in the respective chapters.

Though, every effort has been made to avoid composing mistakes, a few of them might have occurred due to over-sight. The author will feel high obliged if such errors and omissions are brought to his notice. Suggestions and criticisms for the improvement of this textbook shall be gratefully acknowledged and incorporated in the revised edition.

The author expresses his sincere thanks to Shri R.N. Saxena, Principal, Third Boys, Polytechnic, Delhi for encouraging him to write this book.

The author also expresses his sincere gratitude to the Surveyor General of India, under whose guidance, the author took comprehensive training in different branches of surveying and attained practical experience of supervision and execution of various projects in different climatic conditions all over India.

In the end, the author expresses his sincere thanks to Sh. R. C. Khanna for rendering his valuable suggestions.

November, 1979

— R. Agor
1. Introduction 1—32
 1.1. Definition of surveying 1
 1.2. Object of surveying 1
 1.3. Primary divisions of surveying 1
 • Plane surveying 2
 • Scope and use of plane surveying 2
 • Geodetic surveying 2
 • Scope and use of geodetic surveying 2
 1.4. Classification of surveys 3
 • Classification based upon the nature of the field 3
 • Classification based on the purpose of the survey 3
 • Classification based on instruments used 4
 1.5. Geographical Survey 4
 1.6. Principle of surveying 5
 1.7. Units of measurements 6
 • Linear measures 9
 • Angular measures 9
 1.8. Map scales 10
 • Numerical scales 10
 1.9. Necessity of drawing scales on maps 11
 1.10. Requirements of scales 11
 1.11. Classification of scales 11
 • Plain scales 11
 • Diagonal scales 13
 • Principle of a diagonal scales 13
 • Scale of chords 15
 • Vernier scales 17
 • Classification of vernier 17
 • Direct verniers 17
 • Retrograde vernier 20
 • Reading a vernier scale 21
 1.12. Micrometer microscope 23
 1.13. Measuring correct length with a wrong scale 24
 1.14. Distorted or shrunk scales 26
 1.15. Stages of survey operations 27
 1.16. Precision in surveying 30
 • Exercise 1 30
2 Linear Measurements

2.1. General
2.2. Instruments for measuring distances
 - Tapes
 - Steel bands
 - Chains
 - Metric chain
 - Testing and adjusting a chain in the field
 - Chain pins (arrows)
2.3. Instruments for making stations
2.4. Ranging a line
 - Direct ranging
 - Line ranger
 - Indirect ranging
2.5. Chaining a line
2.6. Unfolding a chain
2.7. Method of chaining
2.8. Folding the chain
2.9. Error in measurement due to incorrect chain length
2.10. Chaining on slopping grounds
 - Direct method
 - Indirect method
 - Comparison between direct and indirect methods
2.11. Error in chaining
2.12. Common mistakes in chaining
2.13. Corrections for linear measurements
2.14. Normal tension
 - Exercise 2

3. Chain Surveying

3.1. Introduction
3.2. Purpose of land surveying
3.3. Suitability of chain surveying
3.4. Un-suitability of chain surveying
3.5. Principle of chain surveying
3.6. Shape, size and arrangement of triangles
3.7. Technical terms of chain surveying
3.8. Selection of stations
3.9. Selection and measurement of base line
3.10. Offsets
 - Perpendicular offsets
3.11. Measurement of perpendicular offsets 80
3.12. Measurement of oblique offsets 80
3.13. Taking offsets 81
3.14. Avoiding long offsets 82
3.15. Locating building corners, points of intersections 83
3.16. Degree of accuracy of offsets 84
3.17. Error due to incorrect ranging 85
3.18. Limiting length of offsets 85
3.19. Combined error in length and direction of offsets 86
3.20. Field book 91
3.21. Booking field notes 91
3.22. Instructions for booking the field notes 92
3.23. Equipments 92
3.24. Field work 94
 • Reconnaissance 94
 • Marking stations 94
 • Running survey lines 95
3.25. Instruments for setting out right angles 95
 • Cross staffs 96
3.26. Optical squares 98
 • Principle of an optical square 98
 • Indian optical square 101
3.27. Field problems and their solutions 102
3.28. Obstacles in chaining 105
3.29. Cross staff survey 120
3.30. Method of cross staff survey 120
3.31. Instruments required for cross staff survey 120
3.32. Calculation of area of a cross staff survey 120
3.33. Plotting a cross staff survey 120
3.34. Conventional signs 124
3.35. Plotting a chain survey 131
3.36. Completion of details 132
3.37. Completion of a sheet 132
 • Exercise 3 132

4. Compass Surveying 138—208
4.1. Introduction 138
4.2. Traverse 138
4.3. Classification of traverses based on instruments used 139
4.4. Theory of magnetism 144
4.5. Surveying compasses
 - Dip of magnetic needle 144
 - Prismatic compass 146
 - Surveyor's compass 147

4.6. Adjustments of surveying compasses
 - Temporary adjustments of compasses 148
 - Permanent adjustment of compasses 148

4.7. Comparison between surveyor's compass & prismatic compass 151

4.8. Meridians and bearings
 - True meridian 152
 - Convergency of true meridians 153
 - Determination of true meridian 153
 - True bearing 154
 - Azimuth 154
 - Magnetic meridian 155
 - Magnetic bearing 155
 - Grid meridian 155
 - Grid bearing 155
 - Arbitrary bearing 155

4.9. Designation of bearings
 - Whole circle bearing system 156
 - Quadrantal bearing system 156
 - Conversion of bearings from one system to the other 157

4.10. Fore and back bearings 159

4.11. Calculation of included angles from bearings 160

4.12. Calculation of bearings from included angles 161

4.13. Local attraction
 - Detection of local attraction 169
 - Method of elimination of local attraction by included angles 169
 - Method of elimination of attraction by applying corrections to bearings 173
 - Practical hints for locating local attraction and its correction 178

4.14. Magnetic declination
 - Determination of magnetic declination 183

4.15. Variation of declination 185

4.16. Traversing with a chain and compass 194

4.17. Methods of plotting of traverses 196

4.18. Adjustment of closing error 197
4.19. Sources of error in compass traversing
4.20. Precautions to be taken in compass survey

5. Plane Table Surveying

5.1. Introduction
5.2. Principle of plane tabling
5.3. Instruments used in plane tabling
 - Plane table
 - Alidade
 - Plane alidade
 - Telescopic alidade
 - Magnetic compass
 - Plumbing fork
5.4. Working operations
 - Setting up a plane table
 - Levelling
 - Centering
 - Orientation
5.5. Methods of plane table surveying
 - Radiation method
 - Intersection method
 - Traversing method
 - Adjustment of plane table traverse
 - Resection method
 - Back ray method of resection
 - Three point method of resection
 - Mechanical (tracing paper) method
 - Graphical methods
 - Bassel's method
 - Perpendicular method
 - Method of arcs
 - Trial and error methods (or Lehmann's method)
 - Lehmann's rules
 - Two point problem
 - Orientation by compass
5.6. Advantages and disadvantages of plane tabling
5.7. Errors in plane tabling
 - Error due to inaccurate centering
 - Exercise 5
6. Levelling 248—349

6.1. Introduction 248
6.2. Level 248
 • Telescope 248
 • External focusing telescope 250
 • Internal focusing telescope 250
 • Parallax 251
 • Eye piece 251
 • Diaphragm 252
 • Level tube 253
 • Levelling head 253
 • Tripod 253
6.3. Types of levels 253
 • Dumpy level 254
 • Wye level 254
 • Reversible level 255
 • Tilting level 255
6.4. Advantages and disadvantages of different types of levels 256
6.5. Levelling staff 256
 • Solid staff 257
 • Folding or hinged staff 257
 • Telescope or sop with type staff 258
 • Target staff 258
6.6. Relative merits of self reading staff and target staff 258
6.7. Technical terms used in levelling 259
6.8. Principle of levelling 260
6.9. Special terms and their abbreviations 261
6.10. Adjustments of a level 261
6.11. Temporary adjustments 262
 • Levelling with a three screw head 262
 • Levelling with a four screw head 263
 • Elimination of parallax 264
6.12. Temporary adjustments of a tilting level 264
6.13. Bench Marks 265
6.14. Classification of levelling 266
 • Simple levelling 266
 • Differential levelling 267
6.15. Booking and reducing the levels 268
 • Rise and fall method 269
 • Height of collimation method 269
6.16. Comparison of collimation method with rise and fall method 270
6.17. Gradient of a line 273
6.18. Pegging station at given gradient 274
6.19. Calculation of missing readings of a level book 277
6.20. Spirit levelling 283
6.21. Method of profile levelling 284
6.22. Method of cross-sectioning 286
 • Specimen field book for longitudinal cross-sectioning levelling 286
6.23. Method of reciprocal levelling 289
6.24. Precise levelling 293
 • Precautions for precise levelling 296
6.25. Curvature correction 297
 • Derivation of the formula for curvature correction 297
6.26. Refraction correction 298
 • Correction due to curvature and refraction 298
 • Distance to the visible horizon 299
6.27. Three wire levelling 302
6.28. Difficulties in levelling 303
 • Levelling in undulating terrain 303
 • Levelling across a river 304
 • Levelling across an intervening high wall 305
 • Levelling on steep slopes 306
6.29. Errors I levelling 307
 • Non-verticality of the staff 307
6.30. Sensitiveness of a level tube 310
6.31. Measurement of the sensitiveness 311
6.32. Principle of reversal 314
6.33. Permanent adjustments of a level 315
 • Fundamental lines of a level 315
 • Desired relationship of fundamental lines 315
 • Adjustment of a dumpy level 315
 • Adjustment of a Y-level 320
6.34. Barometric levelling 330
6.35. Method of barometric levelling 331
6.36. Barometric gradient 332
6.37. Corrections to barometric levelling 332
6.38. Barometric height computations 333
 • Derivation of barometric height formula 333
 • Laplace’s formulae of barometric heights 335
 • Exercise 6 337
7. Contouring

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1. General</td>
<td>350</td>
</tr>
<tr>
<td>- Relief represented by spot heights</td>
<td>350</td>
</tr>
<tr>
<td>- Relief represented by altitude tints or layers</td>
<td>350</td>
</tr>
<tr>
<td>- Relief represented by shading</td>
<td>351</td>
</tr>
<tr>
<td>- Relief represented by hachuring</td>
<td>351</td>
</tr>
<tr>
<td>7.2 Contours, contour internal and horizontal equipment</td>
<td>352</td>
</tr>
<tr>
<td>- Horizontal equivalent and contour interval</td>
<td>352</td>
</tr>
<tr>
<td>7.3. Factors for deciding contour interval</td>
<td>353</td>
</tr>
<tr>
<td>7.4. Comparative advantages and disadvantages of the methods of relief representation</td>
<td>354</td>
</tr>
<tr>
<td>7.5. Characteristics of contours</td>
<td>355</td>
</tr>
<tr>
<td>7.6. Contours of natural features</td>
<td>356</td>
</tr>
<tr>
<td>7.7. Methods of contouring</td>
<td>357</td>
</tr>
<tr>
<td>- Direct method</td>
<td>357</td>
</tr>
<tr>
<td>7.8. Indirect method</td>
<td>362</td>
</tr>
<tr>
<td>7.9. Interpolation of contours</td>
<td>365</td>
</tr>
<tr>
<td>7.10. Comparison of direct & indirect methods of contouring</td>
<td>369</td>
</tr>
<tr>
<td>7.11. Contour gradient</td>
<td>370</td>
</tr>
<tr>
<td>7.12. Contouring with an Indian tangent clinometer</td>
<td>372</td>
</tr>
<tr>
<td>- Height indicator</td>
<td>374</td>
</tr>
<tr>
<td>7.13. Uses of contour maps</td>
<td>375</td>
</tr>
<tr>
<td>- Exercise 7</td>
<td>384</td>
</tr>
</tbody>
</table>

8. Areas

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1. Introduction</td>
<td>391</td>
</tr>
<tr>
<td>8.2. Determination of areas</td>
<td>392</td>
</tr>
<tr>
<td>8.3. Computation of areas from plans</td>
<td>393</td>
</tr>
<tr>
<td>8.4. Area between a straight line and irregular boundary</td>
<td>395</td>
</tr>
<tr>
<td>- Mid ordinate formula</td>
<td>395</td>
</tr>
<tr>
<td>- Average ordinate formula</td>
<td>395</td>
</tr>
<tr>
<td>- Trapezoidal rule</td>
<td>396</td>
</tr>
<tr>
<td>- Derivation of the trapezoidal formula</td>
<td>397</td>
</tr>
<tr>
<td>- Simpson’s rule</td>
<td>398</td>
</tr>
<tr>
<td>- Derivation of the Simpson’s formula</td>
<td>398</td>
</tr>
<tr>
<td>8.5. Comparison of accuracies achieved by Simpson’s and trapezoidal rule</td>
<td>400</td>
</tr>
<tr>
<td>8.6. Calculation of areas of a closed traverse from coordinates</td>
<td>407</td>
</tr>
<tr>
<td>- Areas from latitudes and double meridian distance (D.M.D.)</td>
<td>409</td>
</tr>
</tbody>
</table>
9. Volumes 430—478

9.1. General 430
9.2. Methods of computation 430
9.3. Measurements from cross-sections 430
9.4. Formulae for calculation of areas of cross-sections 431
9.5. Calculation of volumes 446
 • Prismatic formula 446
 • End area (or Trapezoidal) formula 449
9.6. Prismatic corrections 449
9.7. Formulae for obtaining Prismatic corrections for different sections 450
9.8. Curvature corrections for volumes 451
9.9. Measurement of volumes from spot levels 454
9.10. Measurement of reservoir capacities 455
9.11. Mass diagram 470
 • Construction of a mass diagram 471
9.12. Characteristics of a mass diagram 472
 • Use of a mass diagram 474
9.13. Lead and lift 474
 • Exercise 9 474

10. Minor instrument 479—503

10.1 Introduction 479
10.2 Hand level 479
10.3 Abney's level 481
10.4 Indian tangent clinometer 484
10.5 Ghat tracer (or cyclone ghat tracer) 488
10.6. Sextant 491
 • Principle of the sextant 491
10.7. Types of sextant 493
10.8. Parallax of box sextant 495
11. Theodolite

11.1. Introduction

11.2. Classification of theodolites
- Transit theodolite
- Non transit theodolite

11.3. Parts of a transit theodolite
- External focusing telescope
- Internal focusing telescope
- Advantages of an internal focusing telescope

11.4. Definitions and other technical terms

11.5. Fundamental lines of a transit

11.6. Geometry of the transit

11.7. Adjustments of a theodolite
- Temporary adjustments
- Levelling with a three screw head
- Levelling with a four screw head
- Elimination of parallax

11.8. Permanent adjustments of a theodolite
- Adjustment of the horizontal plate level
- Adjustment of the horizontal axis
- Adjustment of vertical hair
- Adjustment of the telescope

11.9. Order of carrying out of permanent adjustments of a theodolite

11.10. Uses of theodolites
- Measurement of horizontal angles
- Measurement of vertical angles
- Measurement of magnetic bearings of a line
- Measurement of direct angles
- Measurement of deflection angles
- Prolongation of straight lines
- Running a straight line between two stations
- Laying of angles by repetition method

11.11. Accuracy required in measured angles

11.12. Care of a transit

11.13. Precautions to be taken in theodolite observations
- Sources of error in theodolite observations
- Exercise 11
12. **Theodolite Traversing** 551—651

12.1. Introduction 551
12.2. Purposes of a theodolite traverse 552
12.3. General principle of theodolite survey 552
12.4. Methods of theodolite traversing 553
12.5. Field work of theodolite traversing 560
 - Reconnaissance 560
 - Selection and marking of traverse stations 561
 - Measurement of traverse legs 561
 - Measurement of traverse angles 562
 - Measurement of angles for intersected points 563
 - Booking of field notes 563
12.6. Traverse computations 563
 - Conservative coordinates 569
 - Calculation of the closing error 571
12.7. Advantages independent coordinates 581
12.8. Omitted measurements in traversing 581
12.9. Types of omitted measurements 584
12.10. Land partitioning 632
12.11. Practical problems in theodolite surveying 633
 - Exercise 12 645

13. **Tacheometric Surveying** 652—737

13.1. General 652
13.2. Purpose 652
13.3. Instruments used for tacheometric surveying 652
13.4. Systems of tacheometric measurements 653
 - Fixed hair method 653
 - Movable hair method 653
 - Tangential method 653
13.5. Principle of tacheometry 654
13.6. Stadia method 654
13.7. Types of telescopes fitted in stadia theodolites 663
13.8. Determination of tacheometric constants 663
13.9. Anallatic lens 665
 - Theory of anallatic lens 665
13.10 Movable hair method 690
13.11. Method of observations 691
13.12. Tangential method of tacheometry 694
 - Distance and elevation formula 696
13.13. Disadvantages of the tangential method 697
 - Principle of the Beaman's stadia arc

13.15. Ferguson's percentage unit system
 - Method of percentage divisions
 - Modification of tangential method

13.16. Reduction of readings

13.17. Tacheometric tables
 - Use of tacheometric table

13.18. Reduction diagram

13.19. Tacheometry as applied to subtense measurement
 - Subtense bar
 - Computation of subtense bar distances
 - Effect of angular error on horizontal distance
 - Effect of sag of the bar on distances

13.20. Tacheometric plane tabling

13.21. Three-point in tacheometric plane tabling

13.22. Fieldwork for tacheometric surveying

13.23. Advantages and disadvantages of tacheometric plane tabling

13.24. Direct reading tacheometer

13.25. Errors in stadia surveying
 - Exercise 13

14. Trignometrical levelling
 738—758
14.1. Introduction

14.2. Base of the object accessible

14.3. Base of an inclined object accessible

14.4. R.L. of the elevated points with inaccessible bases

14.5. Instrument axes at different levels
 - Exercise 14

15. Simple curves
 759—840
15.1. Introduction

15.2. Types of curves

15.3. Elements of a curve

15.4. Geometrics of a circle

15.5. Degree of curve

15.6. Relationship between the radius and degree of curve

15.7. Calculation of various elements of curve

15.8. Setting out a simple circular curve
 - Offsets from the tangents
15.9. Rankine's method of tangential deflection angles 774
 • Theodolite method 777
15.9(i) Difficulties in ranging a simple curve 778
 • Point of intersections inaccessible 779
 • Point of commencement inaccessible 780
 • Point of tangency inaccessible 781
 • Both the points of commencement and tangency inaccessible 781
 • Complete curve cannot be set out from the point of commencement 784
 • Obstacle intervenes on the curve 786
 • Typical field problems in setting out simple curves 787
 • Calculation of the radius of a curve passing through a fixed point 788
 • Exercise 15 836

16. Compound and Reserve Curves 841—886
 16.1. General 841
 16.2. Two centered compound curve 841
 16.3. Relationship between different parts of a compound curve 842
 16.4. Setting out a compound curve 850
 16.5. Checks on field work 851
 16.6. Missing data method 865
 16.7. Three centered compound curve 870
 16.8. Reserve curves 870
 16.9. Necessity of providing a reverse curve 870
 16.10. Disadvantages of a reverse curve 871
 16.11. Elements of a reverse curve 871
 16.12. Relationship between elements of reverse curve 872
 • Exercise 16 884

17. Transition Curves 887—938
 17.1. Definition 887
 17.2. Necessity of transition curves 887
 17.3. Type of transition curves 888
 17.4. Super elevation 889
 17.5. Derivation of the formula for super elevation 889
 17.6. Length of transition curves 891
A Text Book of Surveying and Levelling

Publisher: KHANNA PUBLISHERS
ISBN: 9788174092359
Author: R. Agor

Type the URL: http://www.kopykitab.com/product/5450

Get this eBook