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ALGEBRA

1 THEORY OF EQUATIONS & SYMMETRIC
FUNCTIONS OF THE ROOTS

1.  Polynomial     equation—A   polynomial
which is equal to zero is called a polynomial
equation.

For example—2x + 5 = 0,   x2 – 2x + 5 =  0,
2x3 – 5x2 + 1 = 0 etc. are polynomial equations.

2. Root  of  a polynomial equation—If f (x)
= 0 is a polynomial equation and f (α) = 0, then α
is  called  a   root   of   the   polynomial  equation
f (x) = 0.

3. Factor Theorem—If α is a root of equa-
tion f (x) = 0, then the polynomial f (x) is exactly
divisible by x – α (i. e., remainder is zero).

For example—x2 – 5x + 6 = 0 is divisible by
x – 2 because 2 is the root of the given equation.

4. Theorem—Every equation f (x) = 0 of nth

degree has exactly n roots.

5. Multiplicity of a Root—If α is a root of the
polynomial equation f (x) =  0, then α  is called a
root of multiplicity r if (x – α)r divides f (x).

For example—In  the  equation

(x + 1)4 (x – 2)3 (2x – 6) = 0 the roots –1, 2, 3
are of multiplicity 4, 3 and 1 respectively.

6. Complex roots of equations with real
coefficients—If the equation f (x) = 0 with real
constant coefficients has a complex root α  + i β
(α,  β ∈ R,  β ≠ 0),  then  the  complex  conjugate
α  – i β would also be a root of the polynomial
equation f (x) = 0.

Example—Let the equation is—

x2 – 4x + 13 = 0.

Here, the coefficients are all real numbers.

∴ Roots of the equation are

x =
4 ± √⎯⎯⎯⎯⎯16 – 52

2

= 2 ± √⎯⎯–9  = 2 ± 3i

∴ x = 2 + 3i   and x  = 2 – 3i

∴ The roots are complex conjugate of each
other.

Example—Let the equation be

x2 – (1 – 2i)x – 2i = 0.

The roots of this equation are 1, 2i which are
not conjugate pair because all the coefficients of
the given equation are not real.

7. Irrational   roots   of   equations   with
rational coefficients—If the equation f (x) = 0
with  rational  coefficients  has an irrational  root

α + √⎯ β (α, β ∈ Q, β > 0) and is not a perfect square,

then α  – √⎯ β would also be a root of the polynomial
equation f (x) = 0

Example—Consider the polynomial equation

x2 – 4x + 1 = 0

Here, the coefficients are all rational numbers

∴ The roots of the equation are

x =
 4 ± √⎯⎯⎯⎯16 – 4

2

=
4 ± √⎯⎯12

2
 = 2 ± √⎯ 3.
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∴ x = 2 + √⎯ 3, x = 2 – √⎯ 3.

The irrational roots have occurred in pair.

Example—Consider the equation

x2 – ( )2 + √⎯ 3 x + 2√⎯ 3  = 0.

The roots of the equation are 2, √⎯ 3

Here, the roots 2, √⎯ 3 are not in conjugate
pair because all the coefficients of the given equa-
tion are not integer.

8. Quadratic Equation—Consider the equa-
tion

ax2 + bx + c = 0, ∀ a, b, c ∈ R
∴ The roots of this equation are

x =
–b ± √⎯⎯⎯⎯⎯⎯b2 – 4ac

2a
Here, D = b2 – 4ac is called the discriminant

of the equation.

The roots are real and unequal, if D > 0

The roots are real and equal if, D = 0

The roots are complex and unequal, if D < 0

9. Relation between roots and coefficients
of an equation—

Let α1, α2, α3,…, αn be the n roots of the
equation

a0xn + a1xn – 1 + a2xn – 2 +… + an – 1 x + an = 0,

then we have the following relations

Sum of the roots taken one at a time = Σα1

i.e., α1 + α2 + … + αn = – 
a1

a0

Sum of the roots taken two at a time = Σα1 α2

i.e., α1α2 + α2α3 + … =
a2

a0

Sum of the roots taken three at a time
= Σα1 α2 α3

i.e., α1 α2 α3 + α2 α3 α4 + … = – 
a3

a0

 - - - - - - - - - - - - - - - - - - - - - - - - - -
 - - - - - - - - - - - - - - - - - - - - - - - - - -
Product of the n roots

= α1 α2 α3 … αn =
(– 1)nan

a0

The expressions Σα1, Σα1 α 2, Σ  α1 α 2 α 3,…
α1 α2 α3…αn are called the elementary symmetric
functions of α1, α2, …, αn.

10. (i) Relation for quadratic equations—
Let  α,  β  be  two  roots of  the  quadratic  equation
a0x2 + a1x + a2 = 0, then

α + β = – 
a1

a0

αβ =
a2

a0
.

(ii) Relation for cubic equations—Let α, β,
γ be three roots of the cubic equation

a0x3 + a1x2 + a2 x + a3 = 0, then

α + β + γ = – 
a1

a0

αβ + βγ + γα =
a2

a0

αβγ = – 
a3

a0

(iii) Relation   for bi-quadratic  equations—
Let α, β, γ, δ be the four roots of the bi-quadratic
equation

a0x4 + a1x3 + a2x2 + a3x + a4 = 0, then—

α + β + γ + δ = – 
a1

a0

αβ + βγ + γδ + δα + αγ + βδ =
a2

a0

αβγ + βγδ + γδα + δαβ = – 
a3

a0

αβγδ =
a4

a0

ILLUSTRATIONS
Example 1. If the ratio of the roots of the

equation ax2 + bx  + c  = 0 is r , then 
(r + 1)2

r
 is

equal to—

(A)
a2

bc
(B)

b2

c a

(C)
c2

ab
(D)

1
abc

Solution : Let the roots be α, β, then
α + β = – b/a and αβ = c/a.

Given that 
α
β

  =  r

∴ 
(r + 1)2

r
=
( )α

β
 + 1

2

α
β

=
(α + β)2

αβ
 = 

(–b/a)2

c/a
 = 

b2

a c
∴ The correct answer is (B).
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