
DELHI SUBORDINATE SERVICES SELECTION BOARD

RECRUITMENT EXAM.

Mathematics

Editorial Board PRATIYOGITA DARPAN

Editorial Board Pratiyogita Darpan

UPKAR PRAKASHAN, AGRA-2

Introducing Direct Shopping

Now you can purchase from our vast range of books and magazines at your convenience:

- Pay by Credit Card/Debit Card or Net Banking facility on our website www.upkar.in OR
- Send Money Order/Demand Draft of the print price of the book favouring 'Upkar Prakashan' payable at Agra. In case you do not know the price of the book, please send Money Order/Demand Draft of ₹ 100/- and we will send the books by VPP (Cash on delivery).

(Postage charges FREE for purchases above ₹ 100/-. For orders below ₹ 100/-, ₹ 20/- will be charged extra as postage)

© Publishers

Publishers

UPKAR PRAKASHAN

(An ISO 9001 : 2000 Company)

2/11A, Swadeshi Bima Nagar, AGRA-282 002

Phone: 4053333, 2530966, 2531101 Fax: (0562) 4053330, 4031570

E-mail: care@upkar.in, Website: www.upkar.in

Branch Offices:

4845, Ansari Road, Daryaganj, Pirmohani Chowk, 1-8-1/B, R.R. Complex (Near Sundaraiah Kadamkuan, Park, Adjacent to Manasa Enclave Gate), **New Delhi**—110 002

Patna — 800 003 Bagh Lingampally, **Phone:** 011–23251844/66

Phone: 0612–2673340 Hyderabad — 500 044 (A.P.)

Phone: 040–66753330

28, Chowdhury Lane, Shyam Bazar, Near Metro Station,

Gate No. 4 Lucknow — 226 004 (U.P.) Kolkata — 700004 (W.B.) Phone: 0522-4109080

Phone: 033–25551510

- The publishers have taken all possible precautions in publishing this book, yet if any mistake has crept in, the publishers shall not be responsible for the same.
- This book or any part thereof may not be reproduced in any form by Photographic, Mechanical, or any other method, for any use, without written permission from the Publishers.
- Only the courts at Agra shall have the jurisdiction for any legal dispute.

B-33, Blunt Square, Kanpur

Taxi Stand Lane, Mawaiya,

ISBN: 978-81-7482-921-4

Price: ₹ 395.00

(Rs. Three Hundred Ninety Five Only)

Code No. 1560

Printed at: UPKAR PRAKASHAN (Printing Unit) Bye-pass, AGRA

Contents

ALGEBRA

1.	Theory of Equations and Symmetric Functions of the Roots	3–17
2.	Progressions (A.P., G.P. and H.P.)	18–28
3.	Exponential and Logarithmic Series	29–33
4.	Permutations and Combinations	34–43
5.	Binomial Theorem	44–48
6.	Matrices and Determinants	49–73
7.	Sets and Set Theory	74–77
8.	Relations and Functions	78–82
9.	Number Theory	83–89
10.	Group	90-101
11.	Linear Algebra	102-108
12.	Probability	109–119
	GEOMETRY	
	Section-I: Analytical Plane Geometry	
1.	Pair of Straight Lines.	120-124
2.	The Circle	125–138
3.	The Parabola	139–146
4.	The Ellipse	147–156
5.	The Hyperbola	157–167
6.	Polar Equations	168–174

Section–II: Analytical Solid Geometry

7.	Fundamental Concept of 3D	175–182
8.	The Plane	183–189
9.	The Straight Line	190–198
10.	The Sphere	199–208
11.	The Cone	209–216
12.	The Cylinder	217–225
	TRIGONOMETRY	
	Trigonometrical Ratios and Identities	226–228
	Trigonometrical Equations	228–229
	Properties of Triangles	229–231
	Height and Distances	231–231
	Inverse Circular Function	231–232
	Hyperbolic Functions	232–234
	Complex Number and DeMoivre's Theorem	234–252
	Miscellaneous Exercise	253–283
	CALCULUS	
	Section-I: Differential Calculus	
1.	Function	284–290
2.	Limit, Continuity and Differentiability	291–306
3.	Rolle's Theorem, Mean Value Theorem, Taylor's Theorem	307–313
4.	Tangents and Normals	314–323
5.	Maxima and Minima	324–331
6.	Curvature	332–340
7.	Asymptotes	341–348
8.	Curve Tracing	349–358
9.	Partial Differentiation	359–369
	Miscellaneous Exercise	369–375

Section–II: Integral Calculus

	Section 11. Three all cultures	
10.	Indefinite Integrals	376-390
11.	Definite Integrals	391-404
12.	Rectification, Quadrature, Volume and Surfaces	405-419
13.	Multiple Integration	420-430
	Differential Equations	
	Differential Equations	431–458
	Definition	
	 Differential Equations of First Order and First Degree 	
	 Differential Equation of First Order but not of First Degree 	
	• Equation Solvable for <i>p</i> , <i>x</i> and <i>y</i>	
	 Clairaut's Equation 	
	• Geometrical Meaning of a Differential Equation of the First Order	
	 Singular Solution 	
	 Determination of a Singular Solution 	
	Trajectory	
	 Orthogonal Trajectory 	
	 Linear Differential Equation with Constant Coefficient 	
	 Solution of the Differential Equation 	
	• Particular Integral (P.I.)	
	 Methods of Finding Particular Integral 	
	Vector Algebra	
	Vector Analysis	459–483
	 Scalar and Vector Quantities 	
	 Unit Vector 	
	Equal Vector	
	Position Vector	
	 Addition of Vectors 	
	 Properties of Addition 	
	Subtraction of Vectors	

Multiplication of a Vector by a ScalarProperties of Scalar Multiplication

 Position Vector of a Point Dividing a Line in a given Ratio 		
 Collinear Vectors 		
 Linearly Independent and Dependent System of Vectors 		
 Coplanar Vectors 		
• Vectorial Equation of a Line		
Bisectors of the Angles between Two Straight Lines		
 Condition for Three Points to be Collinear 		
 Vectorial Equation of a Plane 		
 Condition for Four Points to be Coplanar 		
 Scalar or Dot Product with their Properties 		
 Vector or Cross Product of Two Vectors 		
 Properties of Vector Product 		
 Scalar Triple Product with Properties 		
Vector Triple Product with their Properties		
 Scalar and Vector Product of Four Vectors 		
 Perpendicular Distance of a given Point from a Line 		
 Reciprocal System of Vectors 		
DYNAMICS		
Velocity, Acceleration and Rectilinear Motion	484-491	
Motion under Gravity	492-499	
Projectiles	500-508	
Impulse, Work, Power and Energy	509-516	
Collision of Elastic Bodies.	517-524	
D' Alemberts Principle (Equation of Motion of a Rigid Body)	525-534	
Moment of Inertia	535–543	
STATICS		
Equilibrium of Three Forces Acting on a Particle	544–551	
Equilibrium of More than Three Forces Acting on a Particle		
Equilibrium of Three Forces Acting on by a Rigid Body	556-569	

General Conditions of Equilibrium.....

Centre of Gravity.....

570-573

574-588

1.

2.

3.

4.

5.

6.

7.

1.

2.

3.

4.

5.

Mathematics

ALGEBRA

1 Theory of Equations & Symmetric Functions of the Roots

1. Polynomial equation—A polynomial which is equal to zero is called a polynomial equation.

For example -2x + 5 = 0, $x^2 - 2x + 5 = 0$, $2x^3 - 5x^2 + 1 = 0$ etc. are polynomial equations.

- **2. Root of a polynomial equation**—If f(x) = 0 is a polynomial equation and $f(\alpha) = 0$, then α is called a root of the polynomial equation f(x) = 0.
- **3. Factor Theorem**—If α is a root of equation f(x) = 0, then the polynomial f(x) is exactly divisible by $x \alpha$ (*i. e.*, remainder is zero).

For example $-x^2 - 5x + 6 = 0$ is divisible by x - 2 because 2 is the root of the given equation.

- **4. Theorem**—Every equation f(x) = 0 of n^{th} degree has exactly n roots.
- **5. Multiplicity of a Root**—If α is a root of the polynomial equation f(x) = 0, then α is called a root of multiplicity r if $(x \alpha)^r$ divides f(x).

For example—In the equation

 $(x+1)^4$ $(x-2)^3$ (2x-6) = 0 the roots -1, 2, 3 are of multiplicity 4, 3 and 1 respectively.

6. Complex roots of equations with real coefficients—If the equation f(x) = 0 with real constant coefficients has a complex root $\alpha + i \beta$ (α , $\beta \in \mathbb{R}$, $\beta \neq 0$), then the complex conjugate $\alpha - i \beta$ would also be a root of the polynomial equation f(x) = 0.

Example—Let the equation is—

$$x^2 - 4x + 13 = 0.$$

Here, the coefficients are all real numbers.

.. Roots of the equation are

$$x = \frac{4 \pm \sqrt{16 - 52}}{2}$$

$$= 2 \pm \sqrt{-9} = 2 \pm 3i$$

$$x = 2 + 3i \text{ and } x = 2 - 3i$$

 \therefore The roots are complex conjugate of each other.

Example—Let the equation be

$$x^2 - (1 - 2i)x - 2i = 0$$
.

The roots of this equation are 1, 2i which are not conjugate pair because all the coefficients of the given equation are not real.

7. Irrational roots of equations with rational coefficients—If the equation f(x) = 0 with rational coefficients has an irrational root $\alpha + \sqrt{\beta} (\alpha, \beta \in \mathbb{Q}, \beta > 0)$ and is not a perfect square, then $\alpha - \sqrt{\beta}$ would also be a root of the polynomial equation f(x) = 0

Example—Consider the polynomial equation

$$x^2 - 4x + 1 = 0$$

Here, the coefficients are all rational numbers

:. The roots of the equation are

$$x = \frac{4 \pm \sqrt{16 - 4}}{2}$$
$$= \frac{4 \pm \sqrt{12}}{2} = 2 \pm \sqrt{3}.$$

$$\therefore x = 2 + \sqrt{3}, x = 2 - \sqrt{3}.$$

The irrational roots have occurred in pair.

Example—Consider the equation

$$x^2 - (2 + \sqrt{3})x + 2\sqrt{3} = 0.$$

The roots of the equation are $2, \sqrt{3}$

Here, the roots 2, $\sqrt{3}$ are not in conjugate pair because all the coefficients of the given equation are not integer.

8. Quadratic Equation—Consider the equation

$$ax^2 + bx + c = 0, \forall a, b, c \in \mathbb{R}$$

... The roots of this equation are

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Here, $D = b^2 - 4ac$ is called the *discriminant* of the equation.

The roots are real and unequal, if D > 0

The roots are real and equal if, D = 0

The roots are complex and unequal, if D < 0

9. Relation between roots and coefficients of an equation—

Let $\alpha_1, \alpha_2, \alpha_3, ..., \alpha_n$ be the *n* roots of the equation

$$a_0x^n + a_1x^{n-1} + a_2x^{n-2} + \dots + a_{n-1}x + a_n = 0$$
,

then we have the following relations

Sum of the roots taken one at a time = $\Sigma \alpha_1$

i.e.,
$$\alpha_1 + \alpha_2 + \dots + \alpha_n = -\frac{a_1}{a_0}$$

Sum of the roots taken two at a time = $\Sigma \alpha_1 \alpha_2$

$$i.e., \qquad \alpha_1\alpha_2 + \alpha_2\alpha_3 + \dots = \frac{a_2}{a_0}$$

Sum of the roots taken three at a time

$$= \Sigma \alpha_1 \alpha_2 \alpha_3$$

$$i.e., \alpha_1 \alpha_2 \alpha_3 + \alpha_2 \alpha_3 \alpha_4 + \dots = -\frac{a_3}{a_0}$$

Product of the *n* roots

$$= \alpha_1 \ \alpha_2 \ \alpha_3 \ \dots \ \alpha_n = \frac{(-1)^n a_n}{a_0}$$

The expressions $\Sigma \alpha_1$, $\Sigma \alpha_1$ α_2 , Σ α_1 α_2 α_3 ,... α_1 α_2 α_3 ... α_n are called the elementary symmetric functions of α_1 , α_2 ,..., α_n .

10. (i) Relation for quadratic equations— Let α , β be two roots of the quadratic equation $a_0x^2 + a_1x + a_2 = 0$, then

$$\alpha + \beta = -\frac{a_1}{a_0}$$
$$\alpha\beta = \frac{a_2}{a_0}.$$

(ii) Relation for cubic equations—Let α , β , β be three roots of the cubic equation $a_0x^3 + a_1x^2 + a_2x + a_3 = 0$, then

$$\alpha + \beta + \gamma = -\frac{a_1}{a_0}$$

$$\alpha\beta + \beta\gamma + \gamma\alpha = \frac{a_2}{a_0}$$

$$\alpha\beta\gamma = -\frac{a_3}{a_0}$$

(iii) Relation for bi-quadratic equations— Let $\alpha, \beta, \gamma, \delta$ be the four roots of the bi-quadratic equation

$$a_0 x^4 + a_1 x^3 + a_2 x^2 + a_3 x + a_4 = 0, \text{ then} - \frac{a_1}{a_0}$$

$$\alpha + \beta + \gamma + \delta = -\frac{a_1}{a_0}$$

$$\alpha \beta + \beta \gamma + \gamma \delta + \delta \alpha + \alpha \gamma + \beta \delta = \frac{a_2}{a_0}$$

$$\alpha \beta \gamma + \beta \gamma \delta + \gamma \delta \alpha + \delta \alpha \beta = -\frac{a_3}{a_0}$$

$$\alpha \beta \gamma \delta = \frac{a_4}{a_0}$$

ILLUSTRATIONS

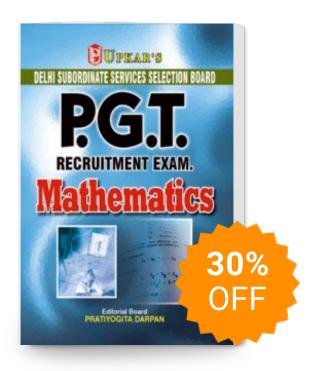
Example 1. If the ratio of the roots of the equation $ax^2 + bx + c = 0$ is r, then $\frac{(r+1)^2}{r}$ is

(A)
$$\frac{a^2}{bc}$$

(B)
$$\frac{b^2}{ca}$$

(C)
$$\frac{c^2}{ab}$$

D)
$$\frac{1}{abc}$$


Solution : Let the roots be α , β , then $\alpha + \beta = -b/a$ and $\alpha\beta = c/a$.

Given that
$$\frac{\alpha}{\beta} = r$$

$$\therefore \frac{(r+1)^2}{r} = \frac{\left(\frac{\alpha}{\beta} + 1\right)^2}{\frac{\alpha}{\beta}}$$
$$= \frac{(\alpha + \beta)^2}{\alpha\beta} = \frac{(-b/a)^2}{c/a} = \frac{b^2}{ac}$$

:. The correct answer is (B).

Delhi Subordinate Services Selection Board P.G.T. Recruitment Exam. Mathematics

Publisher: Upkar Prakashan ISBN: 9788174829214 Author: Pratiyogita Darpan

Type the URL: http://www.kopykitab.com/product/4969

Get this eBook