INDUSTRIAL AUTOMATION AND ROBOTICS
INDUSTRIAL AUTOMATION
AND
ROBOTICS

By

A.K. GUPTA
B.Tech. (ME), M.Tech. (NIT, Jalandhar)
L.M.I.S.T.E., A.M.I.E. (India)
Associate Professor in Mechanical Engg. Department
Chandigarh Engineering College, Landran
Mohali (Pb.)

S.K. ARORA
B.Tech. (Mechanical)

UNIVERSITY SCIENCE PRESS
(An Imprint of Laxmi Publications Pvt. Ltd.)

BANGALORE • CHENNAI • COchin • GUWAHATI • HYDERABAD
JALANDHAR • KOLKATA • LUCKNOW • MUMBAI • RANCHI
NEW DELHI • BOSTON, USA
CONTENTS

Chapters

<table>
<thead>
<tr>
<th>Chapters</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. AUTOMATION</td>
<td>1–9</td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Definition of Automation</td>
<td>1</td>
</tr>
<tr>
<td>1.3 Mechanization vs. Automation</td>
<td>3</td>
</tr>
<tr>
<td>1.4 Advantages of Automation</td>
<td>3</td>
</tr>
<tr>
<td>1.5 Goals of Automation</td>
<td>3</td>
</tr>
<tr>
<td>1.6 Social Issues of Automation</td>
<td>4</td>
</tr>
<tr>
<td>1.7 Low Cost Automation</td>
<td>4</td>
</tr>
<tr>
<td>1.8 Types of Automation</td>
<td>5</td>
</tr>
<tr>
<td>1.9 Current Emphasis in Automation</td>
<td>7</td>
</tr>
<tr>
<td>1.10 Reasons for Automation</td>
<td>7</td>
</tr>
<tr>
<td>1.11 Reasons for not Automation</td>
<td>8</td>
</tr>
<tr>
<td>1.12 Issues for Automation in Factory Operations</td>
<td>8</td>
</tr>
<tr>
<td>1.13 Strategies for Automation</td>
<td>8</td>
</tr>
<tr>
<td>Review Questions</td>
<td>9</td>
</tr>
</tbody>
</table>

2. BASIC LAWS AND PRINCIPLES	10–19
2.1 Fluid Properties	10
Review Questions	19

3. BASIC PNEUMATIC AND HYDRAULIC SYSTEM	20–31
3.1 Introduction to Fluid Power	20
3.2 Basic Elements of Fluid Power System	21
3.3 Advantages and Disadvantages of Fluid Power	21
3.4 Applications of Fluid Power	22
3.5 Pneumatics vs. Hydraulics 23
3.6 Advantages and Disadvantages of Pneumatics 24
3.7 Advantages and Disadvantages of Hydraulics 24
3.8 Applications of Pneumatics 25
3.9 Applications of Hydraulics 25
3.10 Basic Pneumatic System 26
3.11 Basic Hydraulic System 27
3.12 Hydraulic System Design 30
3.13 Fluids used in Hydraulics 30

Review Questions 31

4. PUMPS AND COMPRESSORS 32–62
4.1 Introduction 32
4.2 Pumps vs. Compressors 32
4.3 Positive Displacement vs. Non Positive Displacement Devices 33
4.4 Classification of Hydraulic Pumps 33
4.5 Positive Displacement Pumps 34
4.6 Rotary Pumps 34
4.7 Reciprocating Pumps 46
4.8 Metering Pump 49
4.9 Dynamic / Non Positive Displacement Pumps 50
4.10 Centrifugal Pumps 50
4.11 Pump Selection Parameters 51
4.12 Comparison of Positive and Non Positive Displacement Pumps 51
4.13 Air Compressors 52
4.14 Types of Air Compressors 53
4.15 Positive Displacement Compressors 53
4.16 Rotary Compressors 54
4.17 Reciprocating Compressors 56
4.18 Piston Compressors 57
4.19 Diaphragm Compressor 59
4.20 Dynamic Compressors 59
4.21 Comparison of Different Compressors 61
4.22 Specifications of Compressors 61

Review Questions 62
5. FLUID ACCESSORIES 63–88

- **5.1 Introduction** 63
- **5.2 Air Receiver** 63
- **5.3 Aftercooler** 64
- **5.4 Air Dryer** 66
- **5.5 Air Filter** 68
- **5.6 Pressure Regulator** 70
- **5.7 Air Lubricator** 71
- **5.8 Air Service Unit (F.R.L.)** 72
- **5.9 Pipeline Layout** 73
- **5.10 Seals** 75
- **5.11 Hydraulic Fluids** 76
- **5.12 Hydraulic Reservoir** 78
- **5.13 Hydraulic Filter** 79
- **5.14 Pressure Gauges and Volume Meters** 81
- **5.15 Hydraulic Accumulator** 82
- **5.16 Intensifier** 84
- **5.17 Lines** 85
- **5.18 Fittings and Connectors** 86
- **5.19 Hydraulic Seals** 87

 Review Questions

6. CYLINDERS AND MOTORS 89–117

- **6.1 Introduction** 89
- **6.2 Cylinders** 90
- **6.3 Classification of Cylinders** 90
- **6.4 Classification of Cylinders on the Basis of Construction** 90
- **6.5 Single Acting Cylinder** 91
- **6.6 Double Acting Cylinder** 92
- **6.7 Types of Single Acting Cylinders** 93
- **6.8 Types of Double Acting Cylinders** 95
- **6.9 Other Types of Cylinders** 96
- **6.10 Classification of Cylinders on the Basis of Working Medium** 98
- **6.11 Hydraulic Cylinders** 99
- **6.12 Pneumatic Cylinders** 100
- **6.13 Applications of Cylinders** 101
- **6.14 Cylinder Cushioning** 101
- **6.15 Cylinder Mountings** 103
6.16 Cylinder Sizing
6.17 Cylinder Specification
6.18 Introduction to Motors
6.19 Motor Ratings
6.20 Hydraulic and Pneumatic Motors
6.21 Symbol of Motors
6.22 Classification of Fluid Motors
6.23 Gear Motors
6.24 Vane Motors
6.25 Piston Motors
6.26 Application of Motors

Review Questions

7. CONTROL VALVES

7.1 Introduction
7.2 Classification of Valves
7.3 Direction Control Valves
7.4 Symbol and Designation of Direction Control (DC) Valve
7.5 Classification of DC Valves
7.6 Classification of DC Valves on the Basis of Methods of Valve Actuation
7.7 Symbols for Valve Actuators
7.8 Examples of DC Valves with Actuators
7.9 Classification of DC Valves on the Basis of Construction
7.10 2/2 DC Valves
7.11 3/2 DC Valves
7.12 4/2 DC Valves
7.13 Center Conditions in 4 way DC Valves
7.14 Check Valve
7.15 Pilot Operated Check Valve
7.16 Pressure Control Valves
7.17 Pressure Relief Valve
7.18 Pressure Reducing Valve
7.19 Sequence Valve
7.20 Counterbalance Valve
7.21 Flow Control Valves
7.22 Non Return Flow Control Valve
9. PNEUMATIC LOGIC CIRCUITS 197–230

9.1 Introduction 197
9.2 Control System 197
9.3 Open Loop Control System 197
9.4 Closed Loop Control System 198
9.5 Circuit Design Methods 198
9.6 Motion Sequence Representation 199
9.7 Motion Diagrams 200
9.8 Control Diagram 202
9.9 Cascade Design 202
9.10 Steps Involved in Cascade Design 203
9.11 Sign Conventions 204
9.12 Sequencing 204

Review Questions 230

10. FLUIDICS 231–248

10.1 Introduction 231
10.2 Boolean Algebra 231
10.3 Laws of Boolean Algebra 232
10.4 Truth Table 232
10.5 Logic Gates 233
10.6 Origin and Development of Fluidics 236
10.7 Coanda’s Effect 236
10.8 Tesla’s Valvular Conduit 238
10.9 Fluidic Devices 238
10.10 Fluidic Logic Devices 238
10.11 Fluidic Sensors 241
10.12 Fluidic Amplifier 243
10.13 Advantages and Disadvantages of Fluidics 246

Review Questions 247
11. ELECTRICAL AND ELECTRONIC CONTROLS 249–276

11.1 Introduction to Sensors and Transducers 249
11.2 Sensor Terminology 249
11.3 Selection of a Transducer 250
11.4 Classification of Sensors 250
11.5 Classification of Transducers 251
11.6 Temperature Sensors 252
11.7 Light Sensors 256
11.8 Position Sensors 257
11.9 Piezoelectric Sensors 260
11.10 Pressure Sensors 261
11.11 Strain Gauges 261
11.12 Microprocessor 263
11.13 Microcontroller 268
11.14 Programmable Logic Controller (PLC) 269

Review Questions 275

12. TRANSFER DEVICES AND FEEDERS 277–307

12.1 Introduction 277
12.2 Fundamentals of Production Lines 277
12.3 Types of Assembly Lines 278
12.4 Reasons for using Automated Assembly Lines 279
12.5 Transfer Systems in Assembly Lines 279
12.6 Automatic Machines 280
12.7 Transfer Devices/Machines 280
12.8 Selection of Transfer Devices 280
12.9 Transfer Mechanism in Transfer Devices 281
12.10 Linear Transfer Mechanism 281
12.11 Rotary Transfer Mechanism 282
12.12 Classification of Transfer Devices 283
12.13 Advantages and Disadvantages of Transfer Machines 286
12.14 Conveyor Systems used in Transfer Devices 287
12.15 Feeders 290
12.16 Classification of Feeders 290
12.17 Criteria for Feeder Selection 290
12.18 Parts Feeding Devices 290
12.19 Types of Feeders 294
12.20 Apron Feeders 294
12.21 Reciprocating Feeders (Plate Feeders) 295
12.22 Reciprocating-Tube Hopper Feeder 295
12.23 Reciprocating Plate Feeder 296
12.24 Vibratory Bowl Feeder 296
12.25 Screw Feeders 299
12.26 Belt Feeders 300
12.27 Rotary Plow Feeders 301
12.28 Rotary Table Feeders 301
12.29 Centrifugal Hopper Feeder 302
12.30 Centerboard Hopper Feeder 303
12.31 Flexible Feeders 303

Review Questions 306

13. ROBOTICS 308–341

13.1 Introduction 308
13.2 History of Robots 308
13.3 Definition of a Robot 309
13.4 Industrial Robot 309
13.5 Laws of Robotics 310
13.6 Motivating Factors 310
13.7 Advantages and Disadvantages of Robots 311
13.8 Characteristics of an Industrial Robot 311
13.9 Components of an Industrial Robot 312
13.10 Comparison of the Human and Robot Manipulator 314
13.11 Robot Wrist and End of Arm Tools 315
13.12 Robot Terminology 316
13.13 Robotic Joints 320
13.14 Classification of Robots 321
13.15 Robot Classification on the Basis of Coordinate Systems 321
13.16 Robot Classification on the Basis of Power Source 326
13.17 Robot Classification on the Basis of Method of Control 328
13.18 Robot Classification on the Basis of Programming Method 330
13.19 Robot Selection 330
13.20 Robot Workcell 331
13.21 Machine Vision 333
13.22 Robotics and Machine Vision 336
13.23 Robotic Accidents 337
13.24 Robotics and Safety 338
13.25 Robots Maintenance 339
13.26 Robots Installation 339

Review Questions 340

14. ROBOTIC SENSORS 342–351

14.1 Introduction 342
14.2 Types of Sensors in Robots 342
14.3 Exteroceptors or External Sensors 343
14.4 Tactile Sensors 344
14.5 Proximity Sensors (Position Sensors) 346
14.6 Range Sensors 347
14.7 Machine Vision Sensors 348
14.8 Velocity Sensors 348
14.9 Proprioceptors or Internal Sensors 348
14.10 Robot with Sensors 349

Review Questions 351

15. ROBOT END EFFECTORS 352–367

15.1 Introduction 352
15.2 End Effector 352
15.3 Classification of End Effectors 354
15.4 Grippers 354
15.5 Selection of Gripper 355
15.6 Gripping Mechanisms 358
15.7 Tools 358
15.8 Types of Tools 359
15.9 Characteristics of End- of- Arm Tooling 359
15.10 Elements of End- of- Arm Tooling 359
15.11 Types of Grippers 361
15.12 Finger Grippers 362
15.13 Mechanical Grippers 363
15.14 Vacuum/Suction Grippers 364
15.15 Magnetic Grippers 365

Review Questions 366
16. ROBOT PROGRAMMING 368–382
16.1 Introduction 368
16.2 Robot Programming 368
16.3 Robot Programming Techniques 369
16.4 On-line Programming 369
16.5 Lead-Through Programming 372
16.6 Walk-Through Programming or Teaching 372
16.7 Off-line Programming 373
16.8 Task-level Programming 374
16.9 Motion Programming 375
16.10 Overview of Robot Programming Languages 375
16.11 Requirements for a Standard Robot Language 376
16.12 Robot Languages 377
16.13 Types of Robot Languages 377
16.14 Example of a Robot Program Using VAL 380
 Review Questions 381

17. APPLICATIONS OF ROBOTS 383–398
17.1 Introduction 383
17.2 Robot Capabilities 383
17.3 Applications of Robots 384
17.4 Manufacturing Applications 385
17.5 Material Handling Applications 394
17.6 Cleanroom Robots 397
 Review Questions 398

INDEX 399–405
The book is exhaustively upgraded and improved to incorporate the syllabi of various universities in India. It is specifically designed to serve the basic text for undergraduate and postgraduate course in “Industrial Automation and Robotics” for mechanical, production and industrial engineering students of Punjab Technical University, Jalandhar.

The preparation of the first edition was strongly motivated with the objective of presenting to the students a basic introduction in the field of Automation and Robotics. The second objective was to make the text interesting for students, which makes then grasp the subject by self-study. In the third edition we have retained the objectives and approaches for teaching multidisciplinary field of automation that were presented in the previous edition.

Suggestions from users have led us to incorporate many important changes in the third edition of the book. One of the most significant is the incorporation of number of new sections in the chapter of pumps and compressors, cylinders and motors, control valves, circuits, pneumatic logic circuits, fluidics, transfer devices and feeders and robotics. The circuit diagrams have been thoroughly explained step by step and problems from previous year’s question papers have been fully solved and incorporated in this edition.

Appreciation is expressed to those who have reviewed and/or made contributions in this new edition. We wish to express our sincere thanks to Mr. M.R. Aggarwal (I.A.S.) and Mr. A.K. Aggarwal (General Manager—Mahindra & Mahindra Farm Equipment Sector, Swaraj Division, Punjab Tractors Ltd.) who has suggested valuable guidelines.

We are also thankful to Dr. R.K. Garg (Dr. B.R Ambedkar National Institute of Technology, Jalandhar) for his kind encouragement in the project.

Our sincere thanks to Er. Sumeet Bansal (BHEL), Er. Harry Garg (Scientist—CSIO, Chandigarh), Er. Rachin Goyal (Asstt. Prof., CEC Landran) and Er. Amresh Kumar (Sr. Lecturer, CEC Landran) for their assistance and guidance in developing and producing this work.

We also take the opportunity to express deep sense of gratitude to our parents for being a constant source of inspiration.

Last but not the least we thank the Almighty for giving us enough momentum and enthusiasm for the successful completion of the book.

We hope that the revised edition of the book shall be liked by all the readers. Suggestions for the improvement of the book are welcome and will be incorporated in the next edition, with a view to make the book more useful.

—Authors
Industrial Automation and Robotics By A. K. Gupta, S. K. Arora

Type the URL: http://www.kopykitab.com/product/3425

Get this eBook

40% OFF