||[i|l|lllll

B.S. Manke

(0.5, +0.59)

K=
205~ - 0.58)

KHANNA PUBLISHERS




LINEAR
CONTROL SYSTEMS

with MATLAB Applications

B.S. MANKE
Formerly Prof. of Electrical Engineering,
Maulana Azad National Institute of Technology
Bhopal (M.P.)

KHANNA PUBLISHERS

4575/15, ONKAR HOUSE, OPP. HAPPY SCHOOL
DARYAGANJ, NEW DELHI-110002
Phone : 011-2324 30 42 ; Fax : 011-2324 30 43



Published by :
R.C. Khanna
for KHANNA PUBLISHERS
2-B, Nath Market, Nai Sarak
Delhi-110006 (India).

All Rights Reserved

[This book or part thereof cannot be translated or reproduced in any form (except for review
or criticism) without the written permission of the Author and the Publishers.]

ISBN No. : 978-81-7409-310-3

Eleventh Edition : 2012
Fifth Reprint : 2013

Price : ¥ 320.00

Typesetted at : Excellent Graphics, Delhi.

Printed at : New A.S. Offset Press.



To my wife
Sulbha
and sons
Manish, Shailesh.







Preface to the First Edition

This book has been written to explain the basic principles of Linear Control Systems and an
effort is made to present the subject in a simple and sequential manner to enable the students
to acquire a good grasp of fundamentals of the subject.

The text presented covers the course content of the subject Linear Control Systems of
Indian Universities and is meant for pre-final/final year students of electrical, electronics and
mechanical engineering.

The material given in this book has been thoroughly class tested by the author while
teaching the subject of control systems at undergraduate level for the past several years.

This book is divided in 9 chapters. The first four chapters give the basic concepts of the
subject from the view point of control system representation. Chapter 5 presents the
modelling of control systems and the respective mathematical models derived therein. The
time response and steady state analysis is given in Chapter 6. Necessary derivations have been
derived from the first principles. The stability analysis is described in Chapter 7. The methods
of ascertaining stability: Routh-Hurwitz criterion, Nyquist criterion, Bode plot and root locus
plot have been explained step by step in a simplified manner to make the explanation easily
understandable. The compensation methods and introduction to state space analysis is
described in chapters 8 and 9 respectively.

Suitable illustrative examples as well as solved examples have been incorporated in the
text to make the subject clear and interesting. A list of references is given at the end.

Selective unsolved problems have been included at the end of each chapter to help the
student to judge himself whether he has gained sufficient workable knowledge of basic
principles involved. Answers to odd numbered problems being given in Appendix I.

The salient feature of this book is the inclusion of objective type multiple choice questions
given in Appendix Il covering the entire text which would be of great help for the students
preparing for competitive examinations.

The author hopes that this book will serve the purpose of introducing basic principles of
Linear Control Systems to undergraduate students for whom it is written.

The author would welcome any comments and suggestions to further improve the
usefulness of this book.

The author acknowledges his indebtedness to Miss Saroj Rangnekar, Asst. Prof. in Elect.
Engg., Maulana Azad College of Technology, Bhopal who thoroughly checked the manuscript
and made useful suggestions.

Bhopal B.S. Manke
October, 1987



Preface to the Tenth Edition

The text written in the book deals with the concepts of feed-back control theory. The first
five chapters stress on the fundamental concepts regarding representation and modelling of a
control system. The subsequent chapters deal with the time response analysis, stability
analysis, compensation method, state variable approach, and sampled data/discrete data
systems.

Each chapter contains solved examples to support the theory developed. Unsolved
problems have been included as an exercise.

The answers to graphical solutions may slightly deviate due to graphical errors.

The chapter on computer solutions to control problems gives the use of MATLAB*
solftware. The examples on various topics in the text have been solved using MATLAB
software. This verifies the answers obtained using analytical solution.

Appendices given at the end of the book include :

Appendix | . Answers to Selected Problems

Appendix Il : A Set of Objective Questions

Appendix Il . Short Answer Type Questions

Appendix IV . List of Key Formulae, Charts and Calculation Tables

The author wishes to acknowledge the outcome of discussions with Dr. D.M. Deshpande,
Prof. M.A.N.L.T., Bhopal towards the revision of this edition.

The author is thankful to Shri Vineet Khanna of Khanna Publishers, Delhi for bringing out
this edition on time and presentable manner.

B-309, Sarvadharam Colony, B.S. Manke
Kolar Road, Bhopal

*MATLAB is registered trade mark of Mathwork, Inc.
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Introduction

is chapter deals with basic ideas about the open-loop and closed-loop control systems. The

differential equations describe the dynamic operation of control systems. The Laplace transform

transforms the differential equation into an algebraic equation, the solution is obtained in the transform
domain. The time domain solution is determined by taking the inverse Laplace transform.

CONTENTS

e An Example of Control Action

e  Open-Loop Control System

e  Closed-Loop Control System

e  Use of Laplace Transformation in Control Systems
e Laplace Transform

e  Solved Examples

CONTROL SYSTEM

A control system is a combination of elements arranged in a planned manner wherein each
element causes an effect to produce a desired output. This cause and effect relationship is
governed by a mathematical relation.

If the aforesaid mathematical relation is linear the control system is termed as linear
control system. For a linear system the cause (independent variable or input) and the effect
(dependent variable or output) are proportionally related and principle of superposition is
applicable throughout the operating range of a system.

In a control system the cause acts through a control process which in turn results into
an effect.

There may be variety of systems based on the principle mentioned above but all the
systems have many features in common and as such common approach for the study and
analysis of control systems is possible.

Control systems are used in many applications for example, systems for the control of
position, velocity, acceleration, temperature, pressure, voltage and current etc.
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AN EXAMPLE OF CONTROL ACTION

Control of a room temperature is achieved by switching ON and switching OFF of a power
supply to a heating appliance. Thus power supply to an appliance is switched ON, when the
room temperature is felt low and switched OFF, when the desired temperature is reached.

The above system can be modified, if the duration of application of power is
predetermined to achieve the room temperature within desired limits.

However, a further refinement can be made by measuring the difference between the
actual room temperature and the desired room temperature and this difference being the
error is used to control the element which in turn controls the output, i.e. room temperature.

The above description indicates that in the former case the output (room temperature)
has no control on the input and the control action is purely based on a sort of predetermined
calibration only, where as in the latter case the control action is affected by a feedback
received from the output to the input.

OPEN-LOOP CONTROL SYSTEM

Having explained the concept of control action, a control '”F;“t v Outcput
;‘ystelrnZ clan be described by a block diagram as shown in A%Eég
ig. 1.2.1.

The input r controls the output ¢ through a control Fig. 1.2.1. Open-loop control system.
action process. In the block diagram shown in Fig. 1.2.1, it is observed that the output has no
effect on the control action. Such a system is termed as open-loop control system.

In an open-loop control system the output is neither measured nor fedback for
comparison with the input. Faithfulness of an open-loop control system depends on the
accuracy of input calibration.

CLOSED-LOOP CONTROL SYSTEM

In a closed-loop control system the output
has an effect on control action through a
feedback as shown in Fig. 1.3.1 and hence
closed-loop control systems are also termed
as feedback control systems. The control
action is actuated by an error signal e which Measuring
is the difference between the input signal r element
and the output signal c. This process of
comparison between the output and input
maintains the output at a desired level through control action process.

Input Error Output
c

] Comparator e Control

Action

Fig. 1.3.1. Closed-loop control system.

The control systems without involving human intervention for normal operation are
called automatic control systems.
A closed-loop (feedback) control system using a power amplifying device prior to

controller and the output of such a system being mechanical i.e. position, velocity,
acceleration is called servomechanism.
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Comparison of Open-Loop and Closed-Loop Control System

depends on the calibration of the input. Any
departure from pre-determined calibration
affects the output.

. The open-loop system is simple to construct
and cheap.

. The open-loop systems are generally stable.

. The operation of open-loop system is affected
due to the presence of non-linearities in its

Open-Loop Closed-Loop

1. The accuracy of an open-loop system 1. As the error between the reference input

and the output is continuously measured
through feedback, the closed-loop system
works more accurately.

. The closed-loop system is complicated to

construct and costly.

. The closed-loop systems can become

unstable under certain conditions.

. In terms of the performance the closed-loop

system adjusts to the effects of non-

elements. linearities present in its elements.

USE OF LAPLACE TRANSFORMATION IN CONTROL SYSTEMS

The control action for a dynamic control system whether electrical, mechanical, thermal,
hydraulic etc. can be represented by a differential equation and the output response of such
a dynamic system to a specified input can be obtained by solving the said differential
equation. The system differential equation is derived according to physical laws governing a
system in question.

In order to facilitate the solution of a differential equation describing a control system,
the equation is transformed into an algebraic form. The differential equation wherein time
being the independent variable is transformed into a corresponding algebraic equation by
using Laplace transformation technique and the differential equation thus transformed is
known as the equation in frequency domain. Hence, Laplace transform technique
transforms a time domain differential equation into a frequency domain algebraic equation.

LAPLACE TRANSFORM

In order to transform a given function of time f (¢) into its corresponding Laplace transform
first multiply f (¢) by e, s being a complex number (s = ¢ + jo). Integrate this product w.r.t.
time with limits as zero and infinity. This integration results in Laplace transform of f (¢),
which is denoted by F' (s) or Lf (¢).
The mathematical expression for Laplace transform is,
Lf(#)=F (s) t=0

or F(s) = J:f(t) e St dt .(1.1)

The term “Laplace transform of f(¢)” is used for the letter £f (¢).
The time function f (¢) is obtained back from the Laplace transform by a process called
inverse Laplace transformation and denoted as £! thus
LYLf®l =t [F )] =f@)
The time function f (¢) and its Laplace transform F (s) are a transform pair.
Table 1.5 gives transform pairs of some commonly used functions and Laplace
transform pairs for some functions are derived here under.
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1.5.1 Derivation of Laplace transform

1. Laplace transform of e%

Le® = Jme“t et dt = Jme(“’s)t dt = _ L
0 0 (s—a)
1
(s—a)
As the inverse Laplace transform is denoted by the letter £ and, therefore, the

Leat - (12)

inverse Laplace transform of is e and expressed as below,

(s—a)
L‘l{ 1 }=e‘” ...(1.3)

(s—a)
2. In the function f (t) =eputa=0
e =e%=1. Hence,f(t)=1

Therefore, using Eq. (1.2) £[1] = (s=0)

1
or L[1] = ; ...(1.4)

and o [ﬂ =1 ...(1.5)

3. In the function f(¢) = e put a =jo
e = ¢/ Hence, f (¢) = e/

. 1
Therefore, using Eq. (1.2) Le/® = 5o
e/® = (cos wt + j sin wt)
1 s+ jo

L(cos ot +j sin wt) = — =
J (s—jo) (s2+0?)
Separating into real and imaginary parts,
s

L cos of = REIP ...(1.6)

Lsin of = (smez) (L)

and o {m} = cos ot ..(1.8)
£l Lszi”m%} = sin ot (1.9)

4. In the function f(#) = e* put a = (- o0 + jo)
. et = p(— 0+ jo) ¢

Hence, ft) =el-o+jot
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Therefore, using Eq. (1.2)
1 1

—o+jo)t — =
e = ) Gro e
e-a+j0)t — o0t (cos it + j sin o)

1 _ (s+o)+ jo
(s+0)—jo (s+0)?+n
Separating into real and imaginary parts,

(s+a)

(s+a)? +w?

)

Le % (cos ot +j sin ot) =

Le=% - cos ot =

Le_o‘t . Sin ot="9 o
(s+0)? + o

and

L_l{ (s+0)

ﬁ =e_°¢'COS(Dt
s+a)+w

© .
1 |:(+)2+2:| =e % - gin ot
S+ O ()

5. In the function f () = e puta = 1
: et = el 't = ¢! Hence, f(t) = e

1
Therefore, using Eq. (1.2) Lol = ;¢

(s-1
2 3
el=1+t+—+—+
£2 /3
1 1 1 1 1

+—+

=+ — ...
(s—1 s 2 % st

and

Table 1.5. Table of Laplace transform pairs

...(1.10)

.(1.11)

..(1.12)

...(1.13)

1 4 (¢) unit impulse at ¢t = 0
2 u (t) unit step at t = 0
3 u({t—T) unit stepatt=T
4 t
. e
%
6 "
7 e
8 edt

1
1
s

1 _
_esT
S

|F—‘ mmll—*

S %

S
4
—-

=

s+ta

s—a



LiINEAR CONTROL SYSTEMS

9 te=

10 te®

11 et

12 sin ot

13 cos ot

14 e~ sin ot
15 e~ cos wt
16 sinh oz

17 cosh ot

Comparing the terms

1
=2, cl=—
S S

L tz_—i
42__32
t" ] 1
L|:7n :sn+1 or [’[tn]:sn+1
zZn
and ! JCESY ="

1.5.2 Basic Laplace Transform Theorems
Basic theorems of Laplace transform are given below :
1. Laplace transform of linear combination
Lla fi(t) + bfy(D)] = aF(s) + bFy(s)
where f,(#), f,(¢) are functions of time and a, b are constants.
2. If the Laplace transform of f (¢) is F' (s), then
df ()

@) L7 = [SF(S)—f(O +)]

2
(i) L ddfz(t) = [s2F(s) —s f (0 +) - f(0 +)]

3
(i11) L d dfs(t) = [s3 F(s) —s2f(0 +) —sf"(0 +) — f” (0 +)]

1
(s +a)?
1
(s - a)®
Zn
(S + a)n +1

..(1.14)

...(1.15)

...(1.16)

.(1.17)
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df ) d* £ ()
dt  dr2

att=(0+)

where £ (0 +), f/(0 +), f”(0 +) ... are the values of f(¢),
3. If the Laplace transform of f (¢) is F' (s), then

-1
Q) j £t) = {F;S’ L0 ”}

S
-1 )
@) L H f@ = {Fs(s) ! ;3 +) + ! io +)}

.(1.18)

83 82 S

(tit) L J” f@) =

where £-1 (0 +), f~2 (0 +), f-3 (0 +)... are the values ofj f(t),” f(t),m £() att=(0+),

4. If the Laplace transform of f (¢) is F{(s), then
Lem® f(#) = F(s + a)
5. If the Laplace transform of f (¢) is F(s), then

-1 -2 -3
F(s) 04+ 204+ f <o+>}

2@ =--2L Fes)

ds
6. Initial value theorem
lim f(#) = lim s Lf () ...(1.19 a)
t—>0 §— oo
or lim f(#) = lim s F(s) ...(1.19)
t—0 §—>
7. Final value theorem
lim f(¢) = lim s £f(¢) ...(1.20 a)
t— oo s—0
or lim f(¢) = lim s F(s) ...(1.20)
t— o s—0

The final value theorem gives the final value (¢ — o) of a time function using its
Laplace transform and as such very useful in the analysis of control systems. However, if the
denominator of s F(s) has any root having real part as zero or positive, then the final value
theorem is not valid.

SOLVED EXAMPLES

Example 1.6.1. Find the inverse Laplace transform of the following functions :

1 s+6
g F a s F g WIS MAD 4
(@) F(s) T @) F(s) WAL
(iii) F(s) = 2; (iv) F(s) = 23;2
s +4s+8 s“+4s+6
5 ) s2+2s+3
MY DR = T 6 T8
Solution. (i) F(s) = 1

s(s+1)
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